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- Abstract

This thesis explores a new approach to the classification of

tactical targets using a new biologically-based neural network.

The targets of interest were generated from doppler imagery and

forward looking infrared imagery, and consisted of tanks, trucks,

armored personnel carriers, jeeps and petroleum, oil, and

lubricant tankers. Each target was described by feature vectors,

such as normalized moment invariants. The featr res were

generated from the imagery using a segmenting process. These

feature vectors were used as the input to a neural network

classifier for tactical target recognition.

The neural network consisted of a multilayer perceptron

architecture, employing a backward error propagation learning

algorithm. The minimization technique used was an approximation

to Newton's method. This second order algorithm is a generalized

version of well known first order techniques, i.e., gradient of

steepest descent and momentum methods. Classification using both

first and second order techniques was performed, with comparisons

drawn.

x
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Hodified Backward Error Propagation

for Tactical Target Recognition

1. Introduction

1.i. Historical Background

In recent years there has been an enormous increase in the

interest of artificial neural networks (ANNs) in a variety of

disciplines. One of the reasons behind this renewed interest, is

ANNs may provide a solution to the problem of machine

interpretation of image and voice patterns; a solution that has

thus far eluded the digital computer. Therefore, it is no great

U wonder that ANNs have- sparked the interest of scientific and

engineering groups within the military community. From a

military aspect, if machines can be taught to learn and recognize

am patterns, then it would be possible to realize an autonomous

weapons system. A piloted aircraft could deliver the autonomous

weapon systems well outside enemy airspace, allowing the weapon

systems to seek out the target it was trained to destroy, and

minimize the danger placed on the pilot.

1.2. Problem Statement

The thesis problem is to classify tactical targets as viewed

from forward looking infrared (FLIR) imagery, and doppler

imagery. The classifier to be used is a computer simulation of

an ANN.

i-i



1.3. scope3.3

The targets of interest to be classified were from a

tactical scenario. Doppler and FLIR imagery in raw form, must

be preprocessed before being submitted as the input to an ANN.

Much of this preprocessing Is beyond the scope of this thesis

effort; however, when deemed necessary the reader will be

directed to the applicable reference. The targets to be

classified from the doppler imagery consisted of M60 tanks,

Petroleum, Oil and Lubricant (POL) tankers, jeeps, and 2.5 ton

trucks [12]. Targets extracted from the FLIR imagery consisted

of M551 tanks, 2.5 ton flatbed trucks, M113 Armored Personnel

Carriers (APCs), and CJ-5 jeeps [10].

The ANN architecture used for this study was the multilayer

perceptron described by Richard P. Lippmann [4:15-18). Back

propagation techniques will btL used for updating the network

weights. The minimization algorithms used were first and second

order backward error propagation methods. The second order

algorithm is a generalized version of the first order algorithm

and is also an approximation to Newton's method, derived by David

B. Parker [7:593-600; 8].

1.4. Approach and Methodology

The second order back propagation network required

validation before being tested and used as a classifier.

Therefore, before addressing the pattern classification problem,

the network will be tested on the exclusive OR (XOR) problem. If

1-2



the network can solve the XOR problem, then it may be possible to

apply the network on the more difficult task of pattern

classif !cation.

Next, if the potential exists for pattern classification, it

would be helpful to have a training set of feature vectors which

have already been classified with a neural network. Such is the

- case with the doppler imagery. Dennis Ruck [12] trained a

network using an algorithm provided by Richard P. Lippmann

[(4:17], and using moment invariants extracted from the doppler

imagery. The algorithm was a first order, steepest decent search

technique applying a momentum term. An important result of

Ruck's study, for this thesis effort, was that the network

achieved near perfect classification of the training set.

Therefore, the doppler imagery will play an important role during

the network validation stage.

A comparison between the first order and second order

techniques using this data will follow. Classification accuracy

of the training set and the test data set will be measured

against number of iterations. Moment invariants, from the same

imagery as the training set and never before seen by the network

will make up the test data set. Also, log error plots versus the

log of the number of iterations will be generated for comparison.

The final task was classification of features generated from

the FLIR imagery. Various other features, as well as the moment

invariants generated from the FLIR imagery will be considered for

classification. A portion of the features will be used for

1-3
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classif ication and comparison with a Bayesian classifier

implemented by Mike Roggemann (10]. The task will consist of

training the network with a known training set and measuring the

classification accuracy once the network has been trained.

Again, classification accuracy will be measured using the

training set and test set. First and second order methods will

be used in comparison with the Bayesian classifier.

To conclude the section on classification of the FLIR

imagery targets, the moment invariants will be considered

explicitly for classification. Similar comparisons will be drawn

as described above for the doppler imagery, for both the first

and second order techniques.

1.5. Thesis Organization

This chapter served as the introduction to the thesis effort

undertaken. Chapter two provides a discussion of the fundamental

foundation of material necessary for the origins of the

algorithms developed in chapter three. Chapter four consists of

the validation stage for the second order back propagation model.

Chapter five contains the results obtained during classification

of the features generated from the FLIR imagery. Conclusions,

recommendations, and discussions of the results follow in chapter

six to conclude the thesis.

1-4



2. BacKground Material

2.1. Introduction

This chapter begins with a brief and limited discussion on

preprocessing the doppler Imagery, and forward looking infrared

(FLIR) imagery. Next, an introduction to artificial neural

networks (ANNs) follows, along with a brief discussion on the

current use of ANNs as classifiers. The network architecture,

learning algorithm, and minimization algorithms used for this

study will be included. The following section highlights the

significant steps in Parker's approximation to Newton's method

(8), which in turn will be followed by the equations used to

implement this approximation. The final section includes a

discussion of the Bayesian classifier.

This investigation required a review of the methods and

approximations used in solving differential equations and their

discrete counterparts, the difference equation. Therefore

appendix A has been reserved for a review In these areas. The

algorithms involved are also quite heavily dependent on linear

algebraic forms, so appendix B has been reserved for such

discussions, along with any accompanying notation.

2.2. Image Preprocessing

2.2.1. Moment Invariant Feature Vectors

As mentioned in section 1.3, objects of interest, the

targets, must be preprocessed before being applied to an ANN.

The targets must be extracted from the raw doppler and FLIR

2-i



imagery. This process of extraction is Known as segmentation.

Dennis Ruck [12] describes the segmentation of the doppler

imagery. Where as Mike Roggemann (101 used a variation of the

techniques described by Azriel Rosenfeld [11:62-73] for

segmenting the objects from the FLIR imagery.

Once the targets have been segmented, a set of features is

described to provide shape discrimination between targets. Both

sets of Images used moment Invariants for shape description.

Ruck [12) describes the technique for shaping the doppler

imagery, while Roggemann [10] used a technique described by Hing-

Kuei Hu [2:179-187].

The final preprocessing concerns normalizing the moment

invariants. It was required to normalize the moments to insure

that the large valued moments did not bias the decision making

ability of the classifier. Very large values could influence the

network in the wrong direction. Therefore both data sets were

normalized to have a mean vector of zero and a standard deviation

vector of one. This was accomplished by first computing the mean

and standard deviation of each feature over the entire training

set [1:99-i05]. The jth component of each feature vector in the

training set, xj0 was transformed by the following equation:

xj - mi
yj = , 2. 1

aj

where mj and aj are the mean and standard deviation of feature

j, respectively [1:99-105]. This provides a mean vector of 0 and

2-2



a standard deviation vector of 1, and each feature is now scaled

Identically [12].

As eluded to in the previous paragraph, the normalized

moment Invariants are basically a set of features describing the

target of interest. Therefore, an n-dimensional vector or

feature vector describes and discriminates the targets of

interest, where n represents the number of moment invariants.

From here on these moment invariants will be referred to as

feature vectors, representing the targets of interest. Each

target, known as a class, will have many examples of feature

vectors describing it.

2.2.2. Other Features

There were other features worthy of classification within

the Roggemann FLIR imagery data set [W1]. Roggemann performed

classification with a decision rule of target (TGT) or non-target

(NT) using his implementation of a Bayesian classifier. An

identical classification will be performed with the ANN

classifier studied in this effort for comparison. Target

features extracted from the imagery considered tanks, trucks,

APCs, and CJ-5 Jeeps. Each image of a tactical scenario

consisted of TGT blobs and NT blobs. Features extracted from

these blobs and considered for this study were the length to

width ratio of each blob, the blob mean intensity minus the

background mean intensity, and the blob standard deviation of the

intensity.

2-3
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2.3. Introduction to Artificial Neural NetworKs

An ANN is basically a computing system usually consisting of

many processing elements densely Interconnected via

interconnection weights. These processing elements are commonly

referred to as nodes or cells. The construction of the network,

the way in which the nodes are connected, is known as the network

architecture.

Many architectures exist In the literature and each is

highly dependent on the application [4:4-22]. In this study the

ANN will be used as a classifler. In general, classifiers can

perform three different tasks, as described by Lippmann [4:61.

First, they can identify which class best represents an input

pattern, when the Input has been corrupted by noise. Secondly,

they can be used as an associative content-addressable memory.

In this application, part of an input Is available and the

complete Input pattern is desired. Such an application could be

found in the decoding of information signals. The third task

involves vector quantization. The idea is to map an n-

dimensional input vector into an m-dimensional output vector,

where usually m < n.

This thesis effort involves the Identification of a class

which best represents an Input. The feature vectors discussed

above will be used as the input patterns fed to the ANN. The ANN

used In this study will project an n-dimensional feature vector

to an m-dimensional output vector. This should not be confused

with vector quantization. The resultant output describes the

2-4



predetermined class from where the input originated. Hence, the

term "supervised" network. The network architecture used to

perform this task is discussed In the following section.

2.3.1. Nultilayer Perceptron

A common architecture used for pattern classification

applications is the multilayer perceptron [4:15-18], see Fig.

2.1. The multilayer perceptron consists of one or more hidden

layers, where each node of each layer is connected to each node

in the layer above it. This implies , that each node Is a multi-

input, single-output element.

OUTPUT

3 N2 -1 3 2 3
OUTPUT foutj = f( E wij-fout,i + qj )
LAYER 1

0 ! J ! N 3 -1

M I-1 2 1 2

SECOND ) outj = f( E Wij.foutI + (j )
HIDDEN I

LAYER 0 ! j N2 -1

N-I i
FIRST foutj = f( E wij.fin,I 9j
HIDDEN i

LAYER 0 ! j ! N1-1

INPUT

Figure 2. i Typical Three Layer Multilayer Perceptron Architecture
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In Fig. 2.1, the numerical superscript notation denotes the

parameter associated with its corresponding layer. The letter

(1) denotes the number of inputs to an arbitrary cell, where J

denotes the number of cells in a layer. In the following

section, emphasis is place on notation for clarity.

2.3.2. Notation

Let fout,j(t) denote the output of the jt h node of a given

layer In the network at time t. Furthermore, let fin(t) denote

the pattern of Inputs to that node. Note that all bold face

characters denote vectors. For example, fin(t) is a vector whose

components are

fin(t) = [ fin~l(t) fin,2(t) ... f in,q(t) IT.

Inputs are either the outputs of nodes from the previous layer or

information from the environment, as shown in Fig. 2.1. The

interconnection weight wij connects the output of the ith node in

the previous layer to the jth node of the following layer.

Therefore, w is the weight matrix for a given layer.

All though not shown in Fig. 2.1, each node will also

receive a number of error signals back propagating from the layer

immediately above it. These error signals make up a vector

denoted as,

Oin(t) [ ein,j(t) ein,2(t) ... ein,r(t) ]T.

Just as a node receives a number of weighted inputs to produce an

output, the node will receive a number of weighted error signals.

2-6



The weighted error signals are summed by each node and this total

error (etot) is used for updating the nodal weights and back

propagating to the lower layers. The total error Is

r
e o(t) V e • t).

tot in,i

The output error of the jth node is denoted as eoutj(t) and is

defined below In section 2.4.3 and discussed in chapter three.

The algorithm used in this stidy requires the use of time

derivatives of the above quantities. Therefore primed (')

quantities will denote the time derivative.

2.3.3. BacKward Error Propagation

Within the confines of this thesis, backward error

propagation (BEP) or backprop will be implied as an entire

supervised learning algorithm [16:265]. This algorithm will be

defined with a sigmoidal transfer function, a square error

function, and a weight update rule to be defined in section 2.4.

The multilayer perceptron In Fig. 2.1 Is an example of a

backprop network, as introduced by Lippmann [4:15-18]. Input

signals enter the bottom of the network and exit the top as

output signals. The output signals are computed as functions of

the inputs to the node and interconnecting weights. From this

output, an error signal is computed and re-enters the top of the

network propagating backwards. Hence, the name backprop. Each

node within a given layer contains a set of weights that the cell

must adjust to minimize the error signals.

2-7



Lippmann's first order minimization method uses the backprop

learning algorithm. This algorithm computes the partial

derivatives of the square error function with respect to the

weights of the network. It uses these partial derivatives to

update the weights.

When computing an output, each node within the network

described by Lippmann performs two functions [4:17], as shown in

Fig. 2.2.

OUTPUT

W I jf W ) ..

In,1 In.2 i n, q

I HPUT

Figure 2.2 Functions of a Single Cell on Forward Pass
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First, it computes a weighted sum of all its inputs, the

activation

a (t) wj (ttf (t) + e 2.2 A

The symbol ej is the threshold level of the jth node. The

threshold is no more than a weight, with a corresponding constant

input normally equal to 1. Thus the name threshold, which is

sometimes referred to as an offset. Secondly, it passes this

weighted sum through a sigmoidal transfer function, where the

output of the nonlinearity Is the output of the node. The

nonlinearity most commonly used for problems associated with the

multilayer perceptron Is a sigmoid function,

!

fout, j(aj) =2. 3
(1 * exp(-aj))

As shown in Fig. 2.3, the output of each node Is continuous

between 0 and I. ParKer [8) refers to this process as the

forward pass.

1.25 r 1

f (a),
-~"-- ----

-0.25
-10 10 4

Figure 2.3 Sigmold Transfer Function
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2.3.4. Error Signals

Once the output of the network is determined, an error

signal is computed to measure the performance of the network.

The error signal is back propagated to all the layers. The

weights of each node are adjusted using this error signal that it

receives from all of the nodes which receive its output. Parker

(8] refers to this process as the backward pass and Fig. 2.4

depicts the function of the cell on the backward pass.

ERROR SIGNAL IN
11 21 . .q

ERROR SIGNAL OUT

Figure 2.4 Functions of Single Cell on BacKward Pass
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In the following paragraphs a minimization algorithm or

weight update rule is provided. The algorithm describes the

method In which the node uses the error signals to update its

weights, as described by Lippmann [4:17].

2.3.5. Flrst Order Minimization

Lippmann's first order minimization technique assumes a

squared error function to minimize (4:17]. The weight update

rule uses the first partial of the squared error function with

respect the weights of each cell. Performing this partial yields

the following weight update rule for an arbitrary output layer

node:

wjj(t+l) : wjj(t) + n.Ofin, i(t) + 0-( wj(t) - wj(t-i) ).

The symbol n controls the rate of convergence, while a is a

momentum scalar. The error signal clj for the jth output node has

the following form:

di : fout, j'( t - out, j ).( dj - fout, j )

where dj denotes the desired output of the jth output node. The

desired value Is commonly set to i or 0 and only one output node

allowed high at a time. The error signal for the internal layer

nodes is given by

i outj outj k k jk

The error signal is a weighted summation over all nodes in the

next higher layer. Keep in mind, that the output (tout) in the
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above equation now pertains to the corresponding hidden layer

cell.

The above update equations, follow the gradient of steepest

descent in an iterative fashion. An input enters the bottom of

the network and an output is computed at the top. The partial

derivative of the squared error function Is computed and back

propagated as an error signal. This error signal is in turn used

In updating the previous weight value of an arbitrary cell. This

Iterative process is continued until the minimum of the squared

error function is found indicating optimum weight values.

The momentum term has the effect of smoothing the squared

error surface. It provides more information on the current

update cycle by adding a weighted change from the previous cycle.

The momentum term pushes the change In weights further in the

direction of the previous update. Appendix D considers the

momentum term in more detail.

2.4. Introduction to Second Order Minimization Techniques

In order for classification to take place, there must be

some learning rule the network uses to minimize the error

associated with the decisions it must make. Therefore the

learning rule applies some minimization technique. Dennis RucK

(12) implemented a multilayer perceptron with a backprop learning

rule that applied the momentum method, as provided by Lippmann

(:17] and discussed in the previous section. The momentum

method, developed by Rummelhart, Hirton and Williams [13], is a
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variation of the steepest decent method developed by Werbos (15].

Both methods are first order methods because they only involve

the first derivative of the quantity being minimized. A second

order algorithm makes use of the second derivatives.

To understand the difference between first and second order

techniques, Parker draws upon a simple, but quite effective

analogy which Is quoted below.

"Imagine that you are at the top of a ridge. Below you

is a long, narrow valley that slopes gently down to

your right. Far off in the valley to the right is the

ski lodge, to which you wish to return. One way to

get to the lodge Is to simply sit on your skis and let

gravity move you. You will Zip quickly down the slope

till you hit the valley, but once in the valley you

will coast very, very slowly till you reach the lodge"

(8].

This is equivalent to first order techniques which follow the

gradient of steepest decent. Fast convergence down the slope may

give way to very slow convergence in a valley. On the other hand

consider an alternate path.

"A better way to get back to the lodge is to slightly

drag one of your skis so that you cut across the slope,

maintaining a constant speed till you hit the lodge.
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This is equivalent to a second order algorithm, which

has a constant convergence rate under appropriate

conditions" [8].

The algorithm discussed in the following paragraphs is an

approximation developed by David Parker (7:593-600; 8] to the

second order Newton's method. This algorithm is a more general

case of the steepest decent and momentum methods. By adjusting

the learning parameters correctly the algorithm can be made to

perform as the steepest decent or momentum method. Below is a

brief presentation of the algorithm, for a more thorough

explanation see [8] and appendix A.

2.4.1. Performance Surface

For now, the quantity being minimized for this study is an

independent variable of some performance function of the network.

Parker denotes the instantaneous performance of a network by

s( fin(t), w(t) ). The instantaneous performance is dependent on

the current set of inputs and also the current set of weights.

However, in general, the derivation begins by defining an average

instantaneous performance, which depends only on the weights of

the network. The average instantaneous performance Is given by,

It
-I. (t-T)

avg( s(w(t) ) VI.J._.Ws( fin(), W(t) ).e dr. 2.4

Parker notes that the scalar quantity u is roughly the inverse of

the amount of time the average is considered. Basically, the

instantaneous performance will be exponentially weighted over all
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input patterns fJln(V) for a set of weights w(t) at time t. In

other words, the average performance provides a certain amount of

memory from information of past Inputs. The exponential term

insures that emphasis is placed on the most current inputs [8).

A graph of avg ( s(w) ) as a function of w(t) would define a

performance surface at a fixed time t. Thus, the performance

surface changes over time with each new set of inputs. According

to Parker, the task of the backprop network is to find the lowest

point on the performance surface, and then follow that point as

the surface changes with time [8].

2.4.2. Second Order Differential Equation

Parker's derivation of the second order differential

equation Is very thorough and well explained. Therefore, no

attempt will be made to duplicate his work in full. However, It

will be time well spent to highlight the significant Intermediate

M equations, as well as the final result. See (8] and Appendix A

for further study.

Parker derives the algorithm with an objective of

optimality In mind. Assuming the weights have converged to a

minimum of the performance surface, then as the performance

surface changes with time, the weights should follow this

minimum. The first step involves the derivation of Newton's

method from an optimality criterion. The goal Is to find the

minimum of the performance surface by updating the weights. So

the first step is to take the derivative of both sides of Eq. 2.4

with respect to the weights. Since the performance surface is
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changing with time, it is desired to have the weights follow the

minimum as time changes. This requires taking the time

derivative of both sides. By doing so Eq. 2.4 is transformed to

the following (see appendix A):

0 r f 2  1 d- S -
O avg ]~ as. 2.5at -L -" ,b aw'aw*T  Ow*

where the functional dependencies on t, fln(), and w(t) have

been suppressed for convenience. The star () notation denotes

the optimal value of the weights (wW). The following

relationship can be made since the network performance is a

function of time through the weights:

at aw* aW aW*T  at

As Parker points out, the explicit first order differential

equation of Eq. 2.5, known as Newton's method, is valid only if

the average second derivative matrix is Invertible (it is not)

(7:593-600; 8]. By actually computing the determinant of the

time average second derivative matrix, reveals the matrix to be

singular and thus, not invertible. This Is shown in appendix D.

Regardless, inverting this matrix Is entirely too expensive.

Consider n weights in the network, the number of operations

performed is a function of n 3 or O(n 3 ). The reason behind the

potentially enormous number of operations Is that each component

of the matrix must be computed. This entails computing the
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average second partial with respect to every combination of

weights, followed by inverting the matrix for each cell in the

network. These computations must be made before the weights are

updated. A very unpleasant thought! This task has been avoided

by other researchers using quasi-Newton methods reducing the

number of operations to 0(n2 ).

Parker, on the other hand chose a different route.

Rewriting Eq. 2.5 as

a2 s ow' as
avg J- -.---- , Ra Ww ( aw*T at OWN

an Iterative approach is applied to obtain a close approximation

to the time derivative of WW [8]. Appendix A describes an

iterative approach in general. Following this approach, a

second order differential equation for an optimal path for the

weights:

a~w+ as 02S aw*
= -8"p'- - avg-, 2.7

at 2  aw* awaw*T at

where 0 controls the convergence of the algorithm. The symbol

w denotes the approximate values of W*. The derivation could be

stopped here with an attempt to implement Eq. 2.7. However,

Parker chooses to continue since Eq. 2.7 is only an approximation

for the optimal path (8].

According to Parker, leakage terms are required to

guarantee convergence [7:593-600; 8], see appendix A. The final
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version of the algorithm used for classification in this thesis

Is given by,

82V as d 2 3

at -aa1. - a.favgf aoWwT V
- a
4t 2  aa- aw

Sa ,I + a5"avg T  - 2.8

The matrix I is the identity matrix, and is introduced to ensure

that matrices are added to matrices. Where the constants

at

a2  11"12,

a3  11-' '

a4  I I + 12, and

a5  13

are learning parameters and usually small positive numbers. The

constants l and 12 are the leakage terms introduced by Parker

[8], see appendix A.

2.4.3. Second Order Implementing Equations

Implementing the algorithm of Eq. 2.8 is not a straight

forward exercise. Chapter three will derive the implementing

equations in detail. There are several ways to implement the

algorithm and the implementing equations Parker uses are listed

below. The equations describe a forward sweep and backward sweep

through the network. On the forward sweep each cell computes its

own copy of the following:
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fout. it - out, 0lf in, 1v wK)

wk a3 .At.wK + a5.Awk,

out,C dgT ik MR awT 1k K
in

The calculations for the bacKward sweep are as follows:

r
e = IT.e

tot i n, i in

r

tot in, i in

Of
* e _IL I
out tot af kin

af O 0f
e es *o + e 0 out OW'
out tot af k tot Of OwT k

In In

in In

I n
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AWXi AWR - a2 .At
2 .wk -- a4 .At.Awk

+ ( a *At2 .e + At-e, ).--D=
I tot tot dw k

+ Atee • . out .f,
tot #( wawT wt in R n J

in

WkI,= Wic + AWIl".

IL The above equations describe a discrete implementation of

Eq. 2.7 for a single cell, where K denotes the discrete time

step (8]. The implementation may be simulated with a computer

program. They are listed here for those readers who wish to skip

the detailed implementation stage discussed in chapter three.

Figure 2.5 below demonstrates how the cell varies from Figs. 2.2

and 2.4 In the amount of information it must process.

- I - I f. .,2

I • I

f . .. 9 g 1

101 0 . 10p-
I I ii

I I

Figure 2. 5 Signal Flow Through Cell Using Second Order

Implementation [8]
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2.5. Bayesian Classifier

Later, in chapter five, the results obtained from a Bayesian

classifier will be compared to the results obtained from an ANN

classifier for a given set of features. In light of this, the

text below provides an introduction to the concept of a Bayesian

classifier. In particular, the approach Roggemann used in his

implementation of a Bayesian classifier will be discussed (10].

The discussion begins with a statement of Bayes rule, followed by

its application in the Bayes classifier.

2.5.1. Implementation

Recall that Bayes rule is defined in the following way:

p[A, B)

p [A/B] =
p[B]

and
p[A, B)

p[B/A] =
ptA]

such that
p[A/B) .p[B)

p[B/A] =
p(A]

The probability of the occurrence of B given A (p[B/A) is equal

to the product of the probability of A given B (ptA/B]) and the

probability of B (p[B]), divided by the probability of A (p[A)).

For the Bayes classifier, the Idea is to determine the

probability of the occurrence of a target (TGT) given some

feature (F) describing the target, or p[TGT/F). Another decision
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the classifler must maKe Is to determine the probability of a

non-target (NT) given a feature, or p[NT/F]. Each of these

conditionals is determined from the probability of occurrence of

a feature given a TGT or a NT. Hence, the Known conditionals

exhibited are in the form of p[F/TGT] and p[F/NT]. Thus,

Roggemann's implementation considered classifications of target

(TGT) and non-target (NT) only. In other words, by applying

Bayes rule It is desired to compute the following:

p[F/TGT) .p[TGT)
p [TGT/F] =

p[F]

and

p[F/NT] ,pINT]
p[NT/F] =

p(F]

The value of the probability of a feature is given as:

p[F] = p[F/TGT].p[TGTI + p[F/NT],p[NT].

Applying the "Principle of Indifference" the a priori

probabilities of p(TGT] and p(NTJ are equal to 0.5 [5:1-53].

To consider multiple features (F I , F 2 , ... , Fn ), it's

necessary to impose a conditional dependence on the conditionals

for multiple feature decisions, such that

p(F1 , F2, ... Fn/TGT] z p[F 1 /TGT].p[F 2 /TGT] ... p[Fn/TGT]

n
= Tr P[F /TGT]
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Applying Bayes rule while considering the above alterations,

provides:

-W p[F 1 /TGT] .p[TGT]
P[TGT/F1 . F2 , ... , =

ii P[Fi/TGTIp[TGT] + w p[Fi/NT],p[NT]

and

if p[FI/NT] .p NT]
p[HXT/F t , F2,.. Fn ]

V p[Fi/TGT)'p[TGT] + V p[F 1 /NT).p[NT]

where ii is understood to range over all features, i = I .. n.

Now that the desired a posteriori conditionals have been

defined, it's necessary to define a decision criterion. The

criterion used by Roggemann (0] is the maximum a posteriori

(MAP) decision criterion approximating the minimum probability of

error. Simply choose TGT, if the p[TGT/F] > p[NT/F], otherwise

select NT (5:1-53].

2.5.2. Addition of Bins

The conditional probability distribution function (PDF) of

an arbitrary feature given a TGT (or NT) is In general a

continuous function. Therefore, the probability of a feature

lying on a single feature point given a TGT (or NT) is zero. For

Instance,

p[F - f0 /TGT] - 0.

Therefore, the conditional PDF is broken up into several uniform
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incremental regions, called bins. Hence, the conditional

probability actually desired is given by

p[fO/PGT . F ( fI/TGT].

The number of bins varies and allows the construction of a new

discrete PDF as a function of the number of bins. Figure 2.6

displays a typical conditional PDF (p(F:OBJECT TRUTH]) as a

function of the number of feature bins. The (+) notation is the

conditional PDF for TGT data, while (o) indicates NT data, where

OBJECT TRUTH represents TGT or NT.

.6

.5

0--

co

0 2 4 6 8 10 12 14 16

F, BIN

CONDITIONAL PDF OF LENGTH-JO-WIDTH RATIO

Figure 2.6 Typical Conditional PDF
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*] 2.6. Summary

This chapter focused on the background material necessary

for understanding the thesis effort undertaken. The chapter

began with a discussion of imagery preprocessing. It was found

that the Images were reduced to a set of features describing and

discriminating the targets of interest. These features represent

the final interpretation of the real world. Next, it was desired

to introduce the ANN classifier used In this study, the

multilayer perceptron. The network required a learning algorithm

and bacKprop was chosen using first and second order minimization

techniques. Following a discussion on the performance surface

used for this study, the second order derivation Introduced by

* David Parker was highlighted. Appendix A discusses the

derivation In more detail. Equation 2.8 represents the second

order approximation to Newton's method. Appendix D discusses

m convergence considerations for a true second order Newton's

method. It is in appendix D, where it is reasoned that Eq. 2.5

must be approximated. Chapter two concluded with a brief

introduction to the Roggemann implementation of a Bayesian

classifier.

The following chapter, discusses in detail the

implementation of the differential equation provided by Eq. 2.8.

The approximations assumed, as well as the efforts to reduce the

computational overhead will be covered. The latter part of

chapter three will consider the initial network setup. M
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3. Second Order Algorithm and Network Convergence

3.1. Introduction

The first five sections of this chapter are devoted to the

Implementation stages of Parker's second order derivation

introduced in chapter two. Specifically, the implementation of

Eq. 2.8 will be discussed. The following sections describe in

detail the approximations made, along with a discussion on the

mathematical notation. In addition, the implementing equations

of section 2.4.3 will be explained in full.

Once the algorithm used In this study has been fully

defined, a discussion on the initial state of the network is

necessary. For example, what are the Initial network parameter

values? How are the paremeters chosen? These questions will

be addressed in section 3.6.

3.2. Definition of Network Performance

For the problem at hand, the parameter to be minimized will

be defined to be the squared error function. Where the

instantaneous performance for a single output node is defined to

be

s(fin(t), w(t)) : ( dou(t) -- fout(fln(t), w(t)) )2

- ( e(t) )2

The performance surface is defined to be a function of the

desired output, dout(t), and the actual output at time t, and
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will be interpreted as the square of the error e(t).

As per Eq. 2.2, the output has the following form,

1
fout(fin(t), W(t)) + 3.1

In

In this context, w pertains to just those weights associated with

the cell in question.

Since there can be many output nodes, there must be an

expression for s to accommodate the vector of error signals

generated from the output layer. Therefore, in general s may be

rewritten as

s : eT.e 3.2

The dependencies of s on fin(t) and w(t), and e(t) on t has been

suppressed for notational convenience.

3.2.1. First Partial Derivativ;

Now that a quantity of performance has been defined, the

first and second partial derivatives of the performance indicator

(s) need to be defined. The first partial derivative of s with

respect to the weights is defined as follows,

as a- = -(eT.e)

Ow Ow

aeT

= 2.-- e, 3.3
C)w

since
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aeT  cae

ow Ow

The chain rule was used to obtain Eq. 3.3. The partial

derivative of the transpose of e with respect to w is a matrix

and is defined in appendix B. In this context, w implies all the

weights of the network.

3.2.2. Second Partial Derivative

The second partial of s with respect to the weights is found

by applying the chain rule once again. Therefore,

d2 s  a2

_- (eTee)
awawT dwdwT

- -K . .eT )-
0  T 0w T

2. - - eT.
a w wT aw~wT

a2 s aeT a e a2e T

- : 2. -#- + -. e 3.4
awdwT - w OwT awawT

where the partials of e and eT with respect to w T  and w

respectively, and the second partial of eT with respect to w and

WT are defined In appendix B. Again, in the context above, w is
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a vector of weights containing all the weights in the network.

3.2.3. Approximate Average Second Partial Derivative

Parker notes that Implementing Eq. 2.8 explicitly requires

O(n 2 ) operations [8]. In order to reduce the number of

operations the network would have to perform to update the

weights, some approximations are in order. The first

approximation concerns the average second partial derivative of

the network performance quantity, s. Basically, to define the

average second partial of the network performance,

av d
2 s

avg
OwdwTJ

would require an iterative approach to obtain a solution to this

average second derivative matrix. The elements of the matrix

depend on the behavior of the cell at some point in the past,

considering the current weight values. Therefore, they cannot be

computed without going back in time [7:598]. For some

applications, including the application of this effort, this

would require large storage space in the form of memory.

However, Parker suggests an alternative for the, class of

semilinear functions [8]. The assumption is to approximate the

average of the second partial of the network performance with the

current instantaneous value, such that

32s r 82 s

- avg . 3. 5
awdwT ( awawT
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Since the network cells have semilinear transfer functions in the

sigmoid function [16:264], according to Parker this should be a

good estimate (8].

As it turns out, this approximation plays a significant role

in arriving at the implementing equation Awk+i of section

3.3. If you recall, avg(s) was a function of fIn() and w(t).

The only dependence of s on time was through w(t). Now that the

Instantaneous value is desired the network performance is a

function of fin(t) and w(t), where both are functions of time.

The above approximation is also a desired result. Recall

from Eq. 2.3 that the average network performance applied more

weight to the most current input. The input data set used for

this study was a set of feature vectors describing the target of

interest. There is no reason to believe at this point, that any

one of these feature vectors is more important than the others.

Therefore, this assumption is considered a good estimate.

3.3. Alorithm Development

The development begins with a restatement of Eq. 2.8, where

d2 w s ( 2s
- -a a- a.I + a @avg w

ata I aw 23 awawT

a2 s a
- a I + a .-av-J 3.64 5" ( waw T  at

Using the approximation of Eq. 3.5, Eq. 3.6 becomes,
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R7

a 2w as f8 2s
- = -a *-- a 2 + a -
dt2  I aw 2 a OWT

( ai + aJ - *. 3.7

As pointed out in section 2.4.1, Parker reasoned that since the

average network performance was a function of t, because the

weights were a function of t, that he could make the following

relationship: a(' ( asd° a
Ow:"-3.8

ataw awawT  a t

For Eq. 3.7 to be totally correct, this action must be reversed

since it is clear that the Instantaneous second partial of s Is a

function of fin(t) and w(t). Therefore, substituting Eq. 3.8 in

Eq. 3.7, and removing the identity matrix I, and then expanding,

the following equation is obtained:

a2w as s
- : -a,*- - a2 #w - a3 ,  ,w
at 2  aw owawT

w a (s 
- a*- - a .- - . 3.9at 5 at w

The next step is to substitute Eqs. 3.3 and 3.4 into Eq. 3.9,

such that
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a2W 0 eT ow
- -2*aj.- .e - a2#w- aq.-

at 2  ow at

a 8 T de a~eT
- 2.a 3. -0- + 'e J

3 w T JWaWT

| -- a'a't aw

and by applying the chain rule,

a ( 8 0 T. a l8 eT ~ aT do
S :-- I e .e + --

otaw aw ()t aw at

and by regrouping like terms, Eq. 3.9 becomes,

a2w aeT aw
S-2.al.-.e - a2 .w- as-

at 2  ow at

deT . ( oe a e
- 29-j a .- ow a -

aw 3 WwT 5 at

( 8e a ( 8 eT

--- ow + a -- -e. 3. 10--• 3 awawT  5 w at

Recall that the error was defined as a vector, since there

may be several error signals to back propagate. This implies

that in the hidden layers, individual cells will be responsible

for summing the input error signals and using this sum for

updating the cell's weights. To clean up Eq. 3.10, the following

quantities are defined:
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ein 2.e0--

and

r
etot en,i in11

The upper bound, r, is the total number of error signals

propagated to an individual cell. For instance, the upper bound

on the total error (etot) propagated to the output layer cells is

r = 1. The number of error signals propagated to the hidden

layer cells depends on the number of cells in layer immediately

above it. The upper bound will vary from layer to layer and

remain constant within a layer. Rewriting Eq. 3.10 with Eq. 3.11

in mind, yields:

a2 deT aw
- -al.etot.- - a2 Pw- a.-
at2  aw at

deT . de de
-- -- a -. W + a -

aw 3 3 OwT 5 (t

( a TeT
-e a • .W + a - 3.12

tot* 3 awawT 5 - at

The time derivatives of e are now considered. From Eq. 3.2

it is clear that the error is a function of the desired and

actual outputs. For the cases studied in this thesis effort, the

desired output is considered to be piece-wise continuous and

constant over the time In question. For any given input vector,

each of the output desired responses is either 0 or 1. Thus, its
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time derivative is zero and the time derivative of the error

signal for any single output cell in the network is

de afout

(t at

Since fout is time dependent through fin(t) and w(t), the time

derivative may be expressed as a function of these time dependent

quantities. Therefore the time derivative of the error signal

of a single cell becomes,

de (Cf av Cf Cf
out.- + Qn in . 3. 13

at dwT at CfT at
in

Also note that

Ce (fout
3. 114

awT dwT

and similarly

ae afout
- Z 3. 15
aw Cw

for a single cell. Substituting Eqs. 3.13, 3.14 and 3.15 into

3.12, the weight update rule for a single cell becomes:
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I .

a2 w afout am
- ajoetot. - a2 .W - a 1 - 3. 16

at amw at 3

af af f a d df af
2- .--D=-. a. ut.w a # .A." - + out* In

am awT a5 wT  at dfT at
in

( 2f af df am af af
ao +. a s ----.w a. u . . . _. ---- M
t dwawT 5da! wT  at afT  at

in

Differentiation of the sigmoid function is a straight forward

exercise and will not be covered here. Appendix C describes the

various derivatives of the sigmoid in detail. Regrouping like

terms in Eq. 3.16 results in

a2W df out aw
- = etot. - a 2 .w- a.-
dta am at

2. f f11 f am aw f af
- .~* ~ fa *w + a.$- + I -- .Q..J.f i
av twT a 5o ) at

in

. d 2 f ( dv - 2f af
_ e ot* oukLt. a -w + a *- + a o. 3.17

cl wT  a' at awf T  a

tot dwdwT dt a5dw~T

in

Since the artificial neural network (ANN) for this study

will be run as a computer simulation, discrete mathematics are

introduced. Difference equations, in lieu of differential

equations are required. The following set of approximations are

required for the transformation:

3-10



a2w A 2wk I Awki+ - Awk

at2  At2  At 2

aw Awk
- X -,

at At

Awk : wk - Wk-1 ,

Wk a3.At.wk + a5.AWl(,

Af in afin

At at

fin,k -- a5"Afin,k,

At a the amount of time occurring between time step k and k + i.

The quantities w and fin,K can be thought of as average values,

approximating the discrete time derivatives of wK and fin,

respectively. Recall, that the error surface is changing

instantaneously with each new input vector. The estimates of the

time derivatives of wK and fin,k provide the networK with

information of how the surface is changing with time. These time

derivatives will no doubt be used in updating the cell weights.

With these approximations, apply the first two by

substitutions and then multiply each side of Eq. 3.17 by At 2 .

Add Awk to both sides of the equation and then apply the

approximate discrete time derivatives of wk and fin,K. The

result is
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AW ( I - a -At ).Aw - a ,At 2 .w . a *At2 .e out
X+1 4 K 2 k i tot w I

of 'Of af

oaw k awT I C k af T MRiln

in

* At•e WO + out f 3.18
tot.( OwOf(?T  In, ft

in

The final approximation to the implementation stage concerns the

time derivative of etot. Since

oe 3fou t

at at

for a single output cell, then etot may be approximated by

e, -- Out .w,1ut ., 3.
ot( WT t f 0ft K l, K

in

The final weight update equation becomes

wiC+i-1 - aq ).AWt - a2.w k

af
+ ( a *e + e' out

I tot tot dw K

O2f a2 f
* e *w, + out 3.19

tot awawT IK X awafT k in, 31
in

for At i, and

Wk+ - wk + Aw+j.
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Further reductions will be made on Eq, 3.19 for programming

convenience in section 3.5. However, Eq. 3.19 represents the

most descriptive form of the generalized second order

approximation to Newton's Method.

3.4. Generalized Second Order Algorithm

As eluded to earlier, Parker's second order approximation

is a generalized version of the steepest descent and momentum

methods. From Eq. 3.19, It is readily seen that this equation

contains the steepest descent search algorithm and the momentum

method. The proper selection of learning parameters, a,, ... a 5 ,

will yield the desired algorithm.

3.4.1. Steepest Descent Algorithm

If the steepest descent search algorithm is desired, let a,

equal a small positive number between (0, 1) and let a 4 equal 1.

Set the other learning parameters equal to 0. With the above

learning parameters, the single cell weight update rule is

reduced to the following:

Aw : a O e
KG1 aw I; tot

: 2.ai-fout, (.( I - fout, k )'( d - fout k )*fin, k"

The above equation is equivalent to Lippmann's expression for the

change in weights (4:17), by using the following substitutions:

n - 2-I ,
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-out, K( -f out, k )( d - out, k

such that

w + j n, NOk *fin, k"

Hence, the algorithm of Eq. 3.19 is reduced to a gradient of

steepest descent search algorithm. In addition, one of the terms

of the algorithm has been explained.

3.4.2. Momentum Algorithm

In a similar fashion, the momentum algorithm is obtained.

Set a, and a 4 to small positive numbers between (0, 1) and the

other learning parameters equal to 0. Again Eq. 3.19 is reduced

and the update rule becomes:

df
w -a .e + I - a ).Aw

1(+4 1 aw k tot 4 k

Again, the above equation may be compared to the algorithm

Lippmann introduces (4:17]. Let

a -a

and again using the substitutions of section 3. 4. 1,

iWk+1i : n'Olk'fln,J + *Awk.

Again, Eq. 3.19 is reduced to obtain the momentum method and a

second term of the algorithm has been identified. Appendix D

offers further insight to the momentum term and possible
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convergence applications.

3.4.3. AddItive noise

The leakage terms introduced by Parker, not only produce a

momentum term to enhance convergence, but in addition, induce

noise into the algorithm. The terms associated with the learning

parameters, a 2 and a 3 , produce the effect of noise. Recall that

a 3 was encorporated into the estimated time derivative of wk .

With this in mind, a 2 and a 3 will be set to zero in all

applications of this study.

3.4.-4. Second Order Contributions

All of the terms of Eq. 3.19 have been described with the

exception of those terms associated with a 5 . The Convergence

term a 5  controlls the amount of change in Aw k  and

Afin. Therefore, a 5  also effects the time derivative of

the total error, as seen at the end of section 3.3. Therefore,

contributions from the second order derivatives and time

derivatives are being implemented when a 5 is activated. If

further insight is required in understanding the various

components of Eq. 3.19, expansion of Eq. 3.7 may help.

3.5. Final Implementation Stage

Although Eq. 3.19 is the equation for the final weight

update rule, a further reduction is necessary for a computer

programmed Implementation. Several temporary network variables

will be defined to help simplify the programming overhead. Each

node in every layer is responsible for performing two passes; a
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forward pass and backward pass. This fact will be used in

associating the temporary variables with the model and further

reducing the programming overhead.

In Eq. 3.19 there are several partial derivatives which must

be computed and reduced to a form acceptable for programming. In

other words, what is the partial of tout with respect to w? What

Is the second partial of tout with respect to w and wT and also w

and finT? These partials must be computed in order to simplify

the programming model. Appendix C is devoted solely to the

computations of the various partials of the sigmoid function and

the results will be used here.

Cf
out :f f( -f

w M outIk outk in,k

a8:f
out : f ( I - f ).I

aw'fT X out, tout., k
in

* fout,Jk( I - fout,K )'( i - 2 -fout,kl )'fin,],'wT

O2f
out f .(I -f ).( - 2.of .fT

awdwT k out, k out, k outK in, k in, k

Applying these equations to the algorithm directly would be quite

cumbersome, hence the temporary variables. Before substituting

the above equations into Eq. 3.19, the following temporary

variable is defined. Let

u : foutic'( i - fout,k
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where u is a common artifact generated when computing the partial

derivatives of fout Next, substitute the definitions of each

partial, along with u, into Eq. 3A9, such that

AWk+i ( I - a4 ).Awl( - a2.wk

+ ( al.etot + etot }bU'fin,k

+ • I. u.( 1 - 2.f )*I *fT *w
tot ~ out, IC in, Ik in, IC Ik

* ( u.I + u.( I - 2.f )' f w T ).f'Iout, IC in in, k

AWIC+i ( I - a4 )sAWl - a2twIc + ( a±.etot + etot )*u'fin,k

+ e u. ( I - 2.f o, .I .w' + wT.f,'
tot* out,k I in, k in,kI K in , k

+ U -f in, I )

In the above equation, let

T T
v fin, 1C*wic in, k

where v represents the time derivative of the product of the

input and it's corresponding weight, such that

Awk+ 1 : ( - a4 ).AWk - a2.wC + ( ai.etot + etot )'u'fin,k

+.e .U(I- 2.f ).f *v + Usf
tot* out, R in, K in, k
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Next, define

q u.etot

where q is the 8 term defined in sections 2. 3. 5 and 3.4. 1 and the

weight update equation becomes:

AwX j ( t- aq ).Awk - a2.wk + al.q.fin,k + u'etot.fin,k

+ u'etot'( I - 2 *fout,k )'fin,Ic' v + q'in,k.

Finally, let

r u.( etot * etot.( I - 2 .fout,k .v)

and the final weight update equation becomes:

Awk+j ( I - a4 ).Awk - a2-w k

4 ( al.q + r )'fin,kI + q'fin, k' 3.20

Equation 3.20 represents the final form. Obviously, each

temporary variable will be computed first before Eq. 3.20 is

computed.

3.5.1 Forward Pass

Parker describes the flow of signals in two directions [8].

The input enters the bottom of the network and flows forward with

each node in each layer computing what Parker calls function

signals. Function signals represent the cell outputs and their

respective time derivatives. The cell outputs become the cell
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inputs in the layer directly above the cell in question. The

output time derivatives become the input time derivatives in a

similar manner. The output layer produces a function signal

which is immediately compared to some desired response. The

partial derivative of the squared difference between the desired

and actual outputs is termed the error signal. The error signal

Is treated in a similar manner as the function signals, but they

are back propagated. In addition, the time derivative of the

error signals Is computed from the time derivative of the output

and propagates with the error signal.

On the forward pass each cell in each layer is responsible

for computing and maintaining it's own copy of the following:

I + exp(--fT .WC + 9)
in, X

u = fout, I ( - fout, ),

w : a3.wk + a5.Awk ,

T 9
v fin, k'wk + wT'in, k

The threshold (e) is the cell offset and is updated much in the

same way the weights are updated.

3.5.2. Backward Pass

As mentioned earlier, the cell must also be capable of

handling the backward propagation functions, see Fig. 3.1.
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Figure 3.1 Signal Flow Through a Single Cell (81

Therefore on the backward pass, the cell must compute the error

signals as well as their time derivatives. Figure 3.2 presents a

simple two layer network for enhancing the discussion below.

Since the algorithm used for this thesis effort is a

supervised backprop, there must be some desired response from

which to compare the actual response. The output of each node

in the output layer will be used to compute an error signal used

for updating the weights. Recall that the function of backptop

is to back propagate the partial derivatives of the quantity to

De minimized. First, the total error and it's approximate time

derivative received by each cell are computed, where
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uo, otput, =e. - 2(desimd output -= time derivative e z -2f I
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Figure 3.2 Two Layer Network Display

tot j in, i

r
S S

e etot E in, 1'
t: 1

The second step is to compute the output error signal and
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it's time derivative for propagation to the next lower layer.

The output error Is the product of the partial and the

corresponding weight and can be found by,

* S u e .f .( t - f . :q~w,
out tot af k tot outk out,k k = k

In

where the results of appendix C and the temporary variables have

been applied. The partial time derivative of eout is found in

much the same way and applying the chain rule, such that

af Of d2 f
e' : e' - " + e ut .w' out f. fout tot af tot*( f wT I K a iT k in. kin in in in

: r.wk + qowj.

Again, see appendix C and the temporary variable definitions for

clarity.

Once eout and it's partial time derivative have been

defined, they can then be related to ein of the cells of the next

lower layer and the process is repeated. The cell's weights may

be updated layer by layer during bacKprop or the results may be - 1

stored and updated after the backward pass is complete.

NOTE: For ease of programming and efficiency of the code, each

layer in the multilayer perceptron will be treated as a record,

since each layer has common attributes. By attributes, it is

implied that each layer will have a vector of outputs, and a

matrix of weights. Remember, that the inputs to a cell can
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originate from the environment or from the other cells in the

layer directly beneath it as outputs from that layer. Therefore,

the Inputs will be considered vectors as well. The error signals

associated with each cell will also be defined as a vector

describing the error signals of a given layer.

3.5. Initial Network Conditions

A great deal of discussion has gone into the implementation

stages of the second order back propagation algorithm. However,

the questions that arise are: what is the state of the network

when training Is initialized? What initial values are assigned

to the weights, thresholds and input partial time derivatives?

This section addresses each of these questions.

In answering the question of the initial values of the

weights and thresholds, it's desired to have the activation level

of each cell roughly equal to 0. Thus,

T
fin.W + 0 - 0

implies that each cell within the network fires at approximately

0.5. The reason this is so important, is that if the output

cells fire close to I or 0 early in training and the desired

output is 0 or I respectively, the network may never recover and

successfully train. Consider the following argument given a

first order minimization technique. The weight update rule for

the gradient of steepest descent has the following form from

section 3.4.1:
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UWR 2 .aI.fOUt,K.( I- fout,I ) d- fout, K )'fin, K-

Consider the output from a given cell in the output layer is "I

and the desired is equal to 0. The desired minus the output is

"-1, but the other difference term is "0. Therefore, under these

conditions little or no change occurs in the weights. However,

if each cell In the network is initially firing near 0.5, the

network is provided the opportunity to learn.

More information can be provided by examininig the second

partial of s with respect to w and wT. The underlying idea is to

examine the sign of definiteness of this matrix over the entire

ensemble of training vectors. If it is possible to show that the

average second partial matrix is positive definite over the

entire input ensemble, then this would imply a surface with

upward concavity. This further implies a global minimum over the

entire ensemble of input vectors considered. Appendix D

considers this for a single cell and establishes a criterion for

initializing training in a neighborhood of the global minimum for

an arbitrary training set. The result is provided here:

n
-In(2) w of * In(2). 3.21EJ i in, i

It is implied in the above inequality that one of the inputs is

equal to i, corresponding to the so called threshold.

Information about the input may reduce the above equation to

strictly a function of the weights. For instance, the FLIR
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feature vectors were normalized according to Eq. 2.1. After

normalization, the features ranged from ('-.5, -1.5). Selecting

a worst case scenario where all the features of a given vector

equal 1.5 (or -1.5), the above criterion reduces to:

n
-0. 462 E w 0 0. 62.

1:1

The above inequality of Eq. 3.21 provides a measure as to

the initial weight settings for a given cell. For instance, the

weights could be set randomly and uniformly between (-,r, T),

where 7 is a small floating point number, if some information is

known about the input. A test could then be performed to insure

that the above inequality is met. Randomly, setting the weights

uniformly between (-0.45, 0.45) for the input data in this study

satisfied the above criterion, provided by Eq. 3.21.

The final question to be answered considers the time

derivatives of the input from the environment. No information

was provided concerning the time derivatives of the input from

the environment. Since the algorithm is a discrete version of

the second order linear differential equation, it will be assumed

that each input will be constant over the period of time (at)

in question. Therefore, it is assumed that the network input

time derivatives are equal to 0. It should not be assumed,

however, that the input to the hidden layer nodes are zero.

Recall, that the output of each layer becomes the input of the

cells in the above layer. It is understood that the output is

3-25



changing with time, as per section 3.4.

3.7. Summary

The first several sections of this chapter is devoted to the

Impementation of Parker's linear differential equation in Eq.

2.8. A great deal of text was devoted towards the implementing

stages to achieve a better understanding of the concepts hidden

within the mathematics. Time derivatives of the signals were

derived in order to inform the network about how the performance

surface is changing with time. With the information in this

chapter, along with appendices A, B, C, and D, most (if not all)

of the concepts have surfaced. Once all of the terms of the

final implementing equation had been derived, it was necessary to

introduce the temporary variables to ease the programming effort.

Finally, initial network conditions were considered.

The following chapter provides the results of the validation

stage of the algorithm discussed in section 3.3. Chapter four

begins by using the algorithm derived In this section to solve

the exclusive or problem. The latter sections test the algorithm

on the doppler imagery which has already been classified by Ruck,

to further validate the algorithm.
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4. Validation of Second Order Algorithm

4.1. Introduction

In the last chapter, an extensive analysis of the second

order (SO) algorithm Implementation was realized. In this

chapter, it is desired to focus on the validation stage of the

classifier applying this new algorithm. The validation stage

will consist of two parts. The first involves application of the

SO back propagation algorithm in a network used to solve the

IL exclusive OR (XOR) problem. The second stage initiates the quest

of pattern classification beginning with set of feature vectors

generated from doppler imagery. Ruck used these same features

with moderate success [12]. He was able to attain near perfect

classification with the training data and roughly 75Z

classification of the test data [12]. These facts add validity

to the input feature vectors. The generalized second order

algorithm developed in this study, will allow the comparison

between first and second order techniques.

The next section begins with a description of the XOR

problem set up. The input and learning parameters used are

provided in this section, as well as the convergence results.

Section 4.3 begins the pattern classification effort for this

study. Within this section, the input feature vectors are

described and formatted. In addition, the network architecture

and learning parameters are described for the gradient of

steepest descent, momentum, and second order methods. The
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results of the pattern classification of the doppler imagery

feature vectors follow.

4.2. The Exclusive OR Problem

The results of this section are basically a reproduction of

the results generated by Parker [8). Since the algorithm used

for this study generalizes to the first order methods of

steepest decent and momentum, the problem will be attempted using

both second and first order techniques. The results will be

formulated in a table based on the number of iterations until

convergence.

4.2.1 Input Data and Network Parameters

The idea is to train the network on a fixed set of inputs

which are listed in Table 4.1, along with the desired responses.

The inputs will be shown to the network as in Fig. 4.1,

iteratively until the desired outputs are obtained. The output

will be measured indirectly by monitoring the error. The error

is defined as the difference between the desired output and the

actual output. Therefore, the criterion used in validating the

model will be the error. By minimizing the error, the squared

error will surely follow.
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Table 4.1 Input Pattern Vectors and Desired Response for XOR

Vector f f Desired Response

1 0. 1 0. 1 0. t

2 0.9 0. 1 0.9

3 0.1 0.9 0.9

4 0.9 0.9 0.1

= output, I ei. = 2(desimd ouput - fou),

f',=time derivative m - -2/'_
of tl . oughly m

I I

-'- ------ -- o-- = -

Figure 4.1 XOR Network Architecture

The initial weight values were set to small random numbers

in the range (-0.5, 0.5). This range more than meets the
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criterion provided by Eq. 3.21. The contents of Table 4.2 list

the values of the learning parameters used in solving this

problem.

An extensive search of the optimum learning parameters was

not performed. It was only desired to prove that the network and

it's SO back propagation algorithm could solve the XOR problem.

By solving the problem, it is implied that the network found the

optimum path for the weights to follow. When the error is

Table 4.2 Learning Parameter Values

Method a a a a ai - 3 45

Gradient 0. 1 0.0 0.0 i. 0 0.0

Momentum 0.1 0.0 0.0 0.1 0.0

Second Order 0. 0 0. 0 0. 0 0. 0 0. 05

reduced to some predetermined criterion, the network concludes

it's training, and the optimum weight values are obtained. The

error criterion or the difference between the desired and actual

output was set to 0.1. The criterion must be met or surpassed on

four successive iterations, allowing the network the opportunity

to classify all four inputs and meet the criterion.

4.2.2 Convergence Results

The results tabulated in Table 4.3 show that the network

weights found the optimum path for convergence. This implied

that the network can perform the XOR logic function. The
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average number of iterations were generated f rom 20 test runs.

Table 4.3 Comparison Between First and Second Order Techniques

Method Gradient Momentum Second Order

Average Number
of Iterations >20, 000 5474 5054

The results show that on average, the SO method slightly out

performed the momentum method. In addition, both methods greatly

exceeded the performance of the gradient of steepest descent

method. The gradient of steepest descent method was extremely

slow in learning and terminated after 20,000 iterations, with the

error slowly decreasing.

The results appear to be very promising for extending the

application of the SO approximation to more difficult problems.

The following section addresses such a problem. The fact that

the SO approximation method exceeded the performance of the first

order methods, in no way suggests that it will exceed

performances on more difficult problems. In particular, when

considering the problem of pattern classification where the

inputs may be great in number. Other considerations along this

same line, are the number of layers required, the number of nodes

and ultimately the number of weights required to solve the

problem of machine recognition of images.

The ADA programming code used in implementing the XOR
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algorithm is found in appendix F.

4.3. Classification of Doppler Imagery

In the last section it was shown that the SO approximation

method could in fact be used in solving the XOR problem. The

results represent a promising indication that the applications

may be extended using this method. Therefore, in this section,

features extracted from doppler imagery will be used as the input

to a multilayer perceptron. The multilayer perceptron will apply

r the SO back propagation method, as well as the first order

methods for comparison.

The following subsection describes the features in a little

more detail. Next, the specifics of the network architecture are

discussed, followed by some comments on the values used for the

learning parameters. The final subsection discusses the results

and makes a comparison between the first and second order back

propagation techniques.

4.3.1 Input Feature Data

The features extracted from the doppler imagery consisted of

normalized moment invariants. To the network, the features were

actually a set of vector components of normalized moments. Each

vector, or example of a target, consisted of 22 features, and in

general, the final version of a machines representation of an

object in an image. The targets to be classified included tanks

at four different aspect angles, jeeps, 2.5 ton trucks and

petroleum, oil, and lubricant (POL) tankers. The data base of
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target feature vectors heavily favored the tanks. Table 4.4

breaks down the number targets considered for each class.

Table 4.4 Target Data Base for Classification

Class # Training Samples # Test Samples

Tank 43 17

POL 4 2

Jeep 6 3

Truck 4 2

i Roughly two thiras of the available feature vectors were used in

training the network, while the remaining vectors were used for

testing the network once trained.

4.3.2. Network Architecture and Learning Parameters

The multilayer perceptron will consist of three layers,

which will accept 22 inputs and output 4 classes. Table 4.5

describes the network architecture in some detail. Table 4.6

provides the learning parameters used for classifying the doppler

imagery feature vectors. Several different combinations of

learning parameters were used for training. This search was not

exhaustive, since there is an enormous number of these

combinations. However, the parameters listed in Table 4.6

provided the best combination, of those tried, as far as

classification accuracy and error performance were concerned.
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Table 4.5 Network Architecture Data

Number of Features 22

Layer One Nodes 20

Layer Two Nodes 6

Number of Classes 4

Table 4.6 Network Training Data

Parameter Gradient Method Momentum Method i SO Method

a 0.3 0.3 0.3

a 0.0 0.0 0.0

a 0.0 0.0 0.0

a 1.0 0. 1 0. 1

a 0.0 0.0 0.1

Number of
Iterations 60,000 60,000 60,000

Data Output
Interval 2,000 2,000 2,000

The text to follow provides the results generated from

target classification of the doppler imagery. Average

classification accuracy and the average total output error is

provided, along with the network performance on individual

classes.
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4.3.3. Classification Results

The graphs depicted below are the results from the

classification of the feature vectors generated from doppler

imagery. The results are displayed in terms of average

classification accuracy versus the number of iterations for both

the first and second order methods. The log of the average total

output error versus the log of the number of iterations was

measured, as well. In addition, a typical instance of

classification accuracy for each class is listed below. An

instance implies that the data was not averaged. The graphs

below are presented in order of test results rather than by

method, for ease of comparing each method.

4.3.3.1 Average Classification Accuracy

The average classification accuracy was taken from 1O

complete passes through the network, since it was desired to

obtain an average network performance. Given the randomness of

the initial state of the network, the network does not perform in

exactly the same way with each training attempt. Each pass

through the network will re-initialize the network parameters and

begin training all over again. The specific characteristics

desired for comparison were the convergence rate and stability of

each method.

The criterion used in determining a correct response, and

thus the accuracy of the classifier, was based on the actual

output values of the nodes in the output layer. The desired node

output for a correct classification is 1, while all the other
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node outputs are 0. Therefore, the criterion defines the output

response of the desired node to fire at 0,8 or above, while the

other nodes fIre at 0.2 or less.

Figures 4.2, 4.3 and 4.4 display the average training

accuracy of the gradient of steepest descent, momentum and second

order methods respectively. Figures 4.5, 4.6 and 4.7 display the

average test accuracy.

Ii

.8

>" .6 
"... . . ..

,2- ---_- _ - - ---. . .... .... ... ...---

0.
0 10000 20000 30000 40000 50000 60000

NUMBER OF ITERATIONS

AVERAGE NETWORK TRAINING PERFORMANCE FOR GRADIENT METHOD

Figure 4.2 The network achieved roughly 92Z accuracy on training

data.
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Figure 4.3 The network achieved 987 accuracy on training data.
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Figure 4.4 The network achieved 987 accuracy on training data.

4-li

p



- .6 ,

S.4 -

.2

0
0 10000 20000 30000 40000 50000 60000

NUMBER OF ITERATIONS

AVERAGE NETWORK TESTING PERFORMANCE FOR GRADIENT METHOD

Figure 4.5 The network achieved 75z accuracy on the test data.
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Figure 4.6 The network achieved 78/ accuracy of test data.
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Figure 4.7 The network achieved 78Z accuracy of test data.

The momentum and second order methods slightly exceeded the

performance of the gradient of steepest descent method on the

test and training data. On the average, there was little

difference between the momentum and second order methods.

However, close examination of the average classification accuracy

reveals that the second order method initially converges slightly

quicker than the momentum method. Over the last 10,000

iterations the momentum method seemed to settle down and provide

a consistent accuracy. On the other hand, the second order

method continued to climb, but in a slightly erratic manner.

4.3.3.2 Average Total Output Error

This section presents the results of the average total

output error of the network. The error was defined to the

magnitude of the difference between the desired output and the
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actual output. The total output was merely the error sum of all

of the output nodes. The total output error was averaged over

the entire set of training (or testing) input feature vectors,

and ultimately over each pass through the network. The log of

the average error was graphed versus the log of the number of

iterations. It was desired to determine what trends, if any, the

average error displayed for both the training and test data sets.

Again, Figs. 4.8, 4.9 and 4.10 reflect the training results of

the gradient, momentum and SO methods, respectively. Figures

L, 4.12 and 4.13 display the results of the test data.

-1

..

10000

LOG(NUMBER OF ITERATIONS)

AVERAGE NETWORK TRAINING PERFORMANCE FOR GRADIENT METHOD

Figure 4.8 Note the smooth (almost monotonic) decreasing error.
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Figure L.9 The initial error is dropping off smoothly, but

becomes erratic as training continues.
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Figure 4.10 The initial error is dropping off smoothly, but
becomes erratic as training continues.
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Figure 4.11 Note the initial smooth descent. In addition, notice
that the relative flat region in the middle and then a slightly
erratic descent over the last 30,000 iterations.
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Figure 4.12 The initial error drops much quicker then the
gradient method and becomes erratic as training continues.
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Figure 4.13 The initial error drops much quicker then the

gradient method and becomes erratic as training continues.

Again, the momentum and second order methods slightly exceed

the average error performance of the gradient of steepest descent

method. In addition, the momentum and second order methods for

the most part performed on a comparable basis. Over the first

half of training, the error decreases rather smoothly, after

which the error behavior of the momentum and second order methods

becomes erratic. This may be explained by the following

argument. If the minimum of the error surface lies in a

relatively flat hyperplane, then there could be many solutions

(optimum weight values) for convergence. Since the instantaneous

error surface is changing with each input, the network is simply

trying to find an exact solution. This may be interpreted, as

the network attempting to memorize the input data. The
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classification results of the FLIR imagery in the following

chapter further support this idea. The gradient of steepest

descent method has a little more stability over the last half of

training, as shown in Figs. 4.8 and 4.11. The reason for this,

is that the weights are being updated by a small constant

proportion of the partial derivative. This is slow gradual

process and the network has not quite converged to the minimum;

it's still learning.

4.3.3.3 Target Accuracy

The data in this section reflect a typical instance of the

actual target accuracy provided by all three methods. Again

training and test data results are displayed the tables below.

The data gathered and displayed in the tables below were actually

generated from the network output. The tables are presented in

the form of a Network Confusion Matrix. Not only was it desired

to determine the actual target accuracy, but this data may

provide some insight as to the worth of the feature vectors

discriminating the various targets.

Table 4.7, 4.8, and 4.9 list the results from the training

data, while Table 4.10, 4.11, and 4.12 display the results form

the test data.
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Table 4.7 Training Data Confusion Matrix for Gradient Method.
Reads row by row left to right. The network failed to classify
the following number of feature vectors: 2 tanks and I each POL,
Jeep, and truck.

Class Tank POL Jeep Truck Accuracy

Tank 41 0 0 0 95.3%

POL 0 3 0 0 75X

Jeep 0 0 5 0 83.37

Truck 0 0 0 3 75Z

Table 4.8 Training Data Confusion Matrix for Momentum Method.
Reads row by row left to right. The network failed to classify I
POL feature vector.

Class Tank POL Jeep Truck Accuracy

Tank 43 0 0 0 00%

POL 0 3 0 0 757

Jeep 0 0 6 0 i0o

Truck 0 0 0 4 100.

4-19



Table 4.9 Training Data Confusion Matrix for Second Order Method.
Reads row by row left to right. The network failed to classify I
POL feature vector.

Class Tank POL Jeep Truck Accuracy

Tank 43 0 0 0 00z

POL 0 3 0 0 75.

Jeep 0 0 6 0 tOOZ

Truck 0 0 0 4 100/

The training results in all the tests continue to enhance the

idea, that if a network is trained long enough, it will learn or

at the very least memorize the input training set.

Table 4.10 Test Data Confusion Matrix for Gradient Method. Reads
row by row left to right. Notice that two jeep feature vectors
were classified as a tank, while the other was classified as a
truck.

Class Tank POL Jeep Truck Accuracy

Tank 16 0 0 0 94.IYX

POL 0 0 0 0 0Z

Jeep 2 0 0 1 OZ

Truck 0 0 0 I 507
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Table 4.11 Test Data Confusion Matrix for Momentum Method.
Reads row by row left to right. Notice that two jeep feature
vectors were classified as a tank, while the other was classified
as a truck.

Class Tank POL Jeep Truck Accuracy

Tank 17 0 0 0 IOZ

POL 0 0 0 0 OX

Jeep 2 0 0 i OX

Truck 0 0 0 2 O0z
I

Table 4.12 Test Data Confusion Matrix for Second Order Method.
Reads row by row left to right. Notice that two jeep feature
vectors were classified as a tank, while the other was classified
as a truck.

Class Tank POL Jeep Truck Accuracy

Tank 17 0 0 0 100Z

POL 0 0 0 0 OX

Jeep 2 0 0 1 OX

Truck 0 0 0 2 100Z

It should not be too surprising to observe that the second

order and momentum methods perform slightly better than the

gradient of steepest descent method, given the earlier results.
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The gradient of steepest descent method will eventually reach the

performance levels of the other two methods given more training

iterations.

The Confusion Matrices above reinforce the results provided

by Ruck [12]. The results, in all of the Test Data Confusion

Matrices, confirm Ruck's original hypothesis (12]. The small

number of training features (other than tanks) did not provide

enough information for the network to properly segment the input

decision space. However, even though the second order algorithm

performed as well as the momentum method, it did not provide any

improvements.

4.4. Summary

The f irst stage of validation was to show that the SO

algorithm proved successful in solving the XOR problem. The

proof basically duplicated, as well as verified the results

found by Parker [8). The SO approximation not only solved the

XOR problem, but provided faster convergence on the average. The

ability of the SO algorithm to classify feature vectors

generated from doppler imagery, hinted that the algorithm could

be used on other types of classification features. It was found

that the momentum and second order methods slightly exceeded the

performance of the gradient of steepest descent method.

Furthermore, the second order anct momentum methods performed on a

comparable level.

A discussion of the general results of this chapter, and

4-22



those in chapter 5 will be entertained in chapter 6, within the

discussions section. The next chapter is devoted to the

classification of features generated from Forward Looking

Infrared Imagery.
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5. Classification Results of Forward Looking Infrared Imagery

Ui

5. 1. Introduction

The results of chapter 4 conclude that the second order

minimization technique proved to be relatively successful. This

chapter concerns various classifications of features generated

from forward looking infrared (FLIR) imagery. As mentioned

earlier in chapter two, other types of features, as well as

moment invariants, will be considered for classification.

The next section of this chapter deals directly with the

classification of those features generated for comparison with

the Bayesian classifier. This classification effort will be

based on target (TGT) and non-target (NT) recognition. The

features selected for classification were the normalized versions

of the blob length to width ratio, blob relative mean intensity,

and blob standard deviation of the intensity (section 2.2.2).

The following section concerns the classification of the

moment invariant feature vectors. The same comparisons drawn for

the doppler imagery in chapter 4, will be used again in this

section for the FLIR imagery.

5. 2. Target and Non-Target Feature Classification

There were many feature vectors available for

classification and approximately 75X of each class was used for

training. Of the 819 feature vectors available for input, 615

were used for training; the others made up the testing data base.

5-1



5. 2. 1 Input Feature Data

Objects mak4ing up the TGT class consisted of tanks (TA),

trucks (TR), APCs (AP), and jeeps (CJ). There were also several

features generated from the combination of a tank and jeep (TC).

The two targets were too close together to be resolved by the

segmentation process. Table 5. 1 breaks down the number of

samples provided by each TGT, as well as providing the number of

NT samples, for both training and testing.

Table 5. 1 TGT and NT Sample Breakdown

Class # Training Samples # Testing Samples

TA 60 17

TR 80 25

AP 85 28

CJ 25 1o

TC 15 8

TGT Total 265 88

NT 350 t16

The raw features generated from the FLIR imagery, consisted of a

wide range of values. In order to prevent the larger valued

features from biasing the network, a normalization scheme was

required. An attempt at computing a linear normalization scheme,

placing all the data within the unit hypercube, failed to produce
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desired results. The network failed miserably when attempting to

train on, and classify the feature vectors. This failure

prompted an attempt at another normalization scheme. The

training feature vectors were normalized to a 0 mean vector and a

standard deviation vector of t, as described in section 2.2.1.

This normalization scheme proved to be much more successful then

the previous scheme and the results are provided below in section

5.2.3.

The notion that the first normalization scheme failed and

the second was somewhat successful, may provide some insight as

the function of neural net classifiers. It appears that the

network, not only cares about the magnitude of each vector, but

in addition cares a great deal about the angle between vectors.

It appears from this argument that the network is functioning as

a nearest neighbor classifier.

5.2.2. Network Architecture and Learning Parameters

The network architecture used for classifying this set of

feature vectors is described in Table 5.2. Table 5.3 describes

the network training data for all three minimization techniques.

Table 5.2 Network Architecture Data

Number of Features 3

Layer One Nodes 50

Layer Two Nodes 20

Number of Classes 2
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Table 5.3 Network Training Data

Parameter Gradient Method Momentum Method SO Method

a 0.25 0.25 0.25

a 0.0 0.0 0.02

a 0.0 0.0 0.0

a 1.0 0.3 0.34
a 0.0 0.0 0.1

Number of
Iterations 200,000 200,000 200, 000

Data Output
Interval 4,000 4,000 4,000

The weights and thresholds were initialized to values within the

interval (-0.45, 0.45) using a uniform random number generator.

5.2.3. Classification Results

This portion of the text provides the classification results

of the neural net classifier. The instantaneous classification

accuracy versus the number of iterations is provided below. Due

to the large number of input training vectors and the enormous

number of training iterations required, the results were not

averaged. The log error is also considered, along with the

tally on the TGT and NT individual accuracies. Again,

comparisons between the different methods will be drawn for both

the training data and testing data. In addition, the performance

results of the Bayesian classifier are presented in this section
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as well.

5.2.3.1 Instantaneous Classification Accuracy

For the neural net classifier, the same criterion as the one

used in section 4.4.3.1 is used again here. The desired output

node must fire greater than or equal to 0.8, while the remaining

nodes fire at 0.2 or less, By using this criterion, the neural

network classifier has somewhat of a disadvantage, when compared

to the Bayesian classifier. Recall that the Bayesian classifier

uses maximum a posteriori decision criterion. This is a more

lenient criterion than the one placed on the neural network

classifier. Appendix E considers a comparison between the two

classifiers, given a more lenient criterion placed on the neural

net classifier.

The results of each method follows, with the training data

first, followed by the testing data. The results from the

Bayesian classifier are provided next and comparisons between the

two classifiers conclude this subsection. Figures 5.1, 5.2, and

5.3 consider the training data, while Figs. 5.4, 5.5, and 5.6

consider the test data.
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Figure 5.1 In comparison with Figs. 5.2 and 5.3, the gradient
method is slower in convergence, reaching approximately 82X
classification accuracy.
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Figure 5.2 The network achieved over 87. accuracy on training
data.
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Figure 5.3 The network achieved over 87Z accuracy on training
data. The second order method reached this accuracy faster than
the other two methods
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Figure 5.4 The test data accuracy was poor, reaching only 627.
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Figure 5.5 The network averaged roughly 50Z accuracy over the
last 30,000 iterations Not much improvement over the gradient
method.

S8
,8 v, .......

.2

0
0 30000 60000 90000 120000 150000 180000 210000

NUMBER OF ITERATIONS

NETWORK TESTING PERFORMANCE FOR SECOND ORDER METHOD

Figure 5.6 The network averaged over 65/ accuracy over the last
30,000 iterations, revealing a distinct improvement,
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Again, the momentum and second order methods continue to

exceed the performances of the gradient of steepest descent

method, but only slightly. The differences between the momentum

and second order techniques, again are minimal. However, close

examination of the data reveals that the second order method

begins to exceed the performance of momentum method at 30,000

iterations for the training data. The second order method also

has a distinct advantage over the momentum method during the last

30,000 iterations. These same observations are carried over into

the test data results once the network reaches 60,000 iterations.

Although the results as a whole were not terribly exciting, the

fact that the second order method provided better accuracy, in

fewer number of iterations is significant. However, the network

performance has not been averaged and these results should not be

taken out of context. More testing is required, such that the

network performance may be averaged. In addition, it would be

desirable to increase the number of features.

5.2.3.2. Average Total Output Error

The same criterion for determining the average output error

in section 4.4.3.2 is used here. The average total output error

was measured only for the training data of all three methods.

The training error is given so that the decreasing trends may be

observed and verified.
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Figure 5.7 Notice that the error plot is much smoother than in
Figs 5.8 and 5.9.
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Figure 5.8 Notice the smooth initial reduction. Although rough
in the latter training stages, the error continues to decrease.

5-10



.6 T -

.2!I [L : . . . . . r. . . , '

.5 . . .. I !

the course of training.

Here again, the momentum and second order methods are

slightly more successful than the gradient of steepest descent

method. As noted earlier, there is still minimal differences

between the momentum and second order methods. The error was

extremely unstable, but decreasing none the less. Averaging the

data would have smoothed the results quite a bit. Again, f urther

testing is required.

Notice that the roughness, in later training iterations,

appears more significant with the second order method, than

either of the other two methods. In turn, the momentum method is

rougher than the gradient method. Again, part of this would be

suppressed by averaging. However, the results may further

suggest another reason. The choice of learning parameters may
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not be suitable for decreasing the error in an efficient manner.

This suggests that the learning parameters may also have to

updated at various stages in training, to enhance learning.

5.2.3.3. Neural Met Classifier versus Bayesian Classifier

The following tabulated results demonstrate the comparisons

of classification accuracy between the statistical Bayesian

Classifier and the neural net classifier. The results are broken

down in Table 5.4. Each method of the neural net classifier is

considered, after the network had achieved 200,000 trainlng

iterations. The results provided below are just typical

instances of each method; the results have not been averaged.

Again, Keep in mind that the criteria used for each classifier is

different, with neural net classification criterion being much

more stringent. Appendix E demonstrates a more comparable

criterion.

Table 5.4 Classification Accuracy of Neural Net Classifiers
versus the Bayesian Classifier. (1) Gradient Method, (2) Momentum
Method, (3) Second Order Method, (4) Bayesian.

Accuracy

Class (1) (2) (3) (4)

TGT Training 73. 6X 81. 4Z 82. 8Z 80. 3Z

NT Training 83. iZ 87. OZ 86. 6Z 70. 6Y

TGT Testing 57. 9Z 61. 4Z 64. 8. 76. 9Z

NT Testing 57. 87 62. 2Z 64. 7Z 7 .
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The neural net classifier exceeds the performance of the

Bayesian on the training data and the roles are reversed for the

test data. It is believed, that by increasing the number of

features, this may provide more information to the classifiers,

and especially to the neural net classifier. The neural net

classifier learns by example, more examples, then more

information is provided to the net. In other words, the net

learns more about its environment. Thus, the net would have more

of an opportunity to extract the essence of a particular object.

5.3. Moment Invariant Feature Classification

This section concerns the classification of the moment

invariant features. The following subsection describes the

input training data. Next, the network architecture is

discussed, followed by the classification results.

5.3.1. Input Feature Data

The classes considered for this study consisted of tanks

(TA), Trucks (TR), and armored personnel carriers (AP).

Initially, there were targets generated from two fields of view,

narrow and wide. The narrow field of view consisted of 3.43

degrees in the horizontal and 2.57 in the vertical. The wide

field of view consisted of 10,32 degrees in the horizontal and

7.74 degrees in the vertical. For reasons to be explained later,

the narrow field of view objects were used exclusively. There

were t04 feature vectors, of which 75Z were used for training,

while the remainder were used for testing. Table 5.5 breaks down
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the number of samples for each category for the narrow field of

view targets,

Table 5.5 Target Data Base

Class # Training Samples # Test Samples

TA 25 7

TR 25 5

AP 25 17

There was a relatively even distribution of vectors describing

each target, allowing an even distribution of the training data,

as opposed to the breakdown listed in Table 4.4. In general,

the more examples of an object the network has to train on, the

better chance the network has of learning that object.

5.3.2. Network Architecture and Learning Parameters

The multilayer perceptron consists of 3 layers, which will

receive 36 input features and output 4 classes. Table 5.6

describes the network architecture, while Table 5.7 defines the

predetermined learning parameters.
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Table 5.6 Network Architecture Data

Number of Features 36

Layer one nodes 27

Layer One Nodes 9

Number of Classes 3

Table 5.7 Network Training Data

Parameter Gradient Method Momentum Method SO Method

a 0.1 0.1 0. I

a 0.0 0.0 0.0

a 0.0 0.0 0.0

a 1. 0 0. 1 0. 1

4 1
a 0.0 0.0 0. 1

Number of
Iterations 20,000 20,000 20,000

Data Output
Interval 400 400 400

Many combinations of learning parameters were tried, but the

search was not exhaustive. The learning parameters listed in the

above table provided the best results.
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5.3.3. Classification Results

The same comparisons as those made in section 4.4.3.1 will

again be drawn in this section for the FLIR imagery features.

The average classification accuracy, as well as log error plots

are considered. Again, results of all three minimization methods

will be compared.

5.3.3.1. Average Classification Accuracy

Here again, the same criterion used for classification in

section 5.2.3.1, is used for these accuracy results. Initially,

both wide and narrow field of views were used for

classification. However classification accuracies never exceeded

63X on the training data. The images generated from the wide

field of view produced poor target resolution. Targets were not

distinguishable from non-target blobs, much less from one

another, to the human observer. The results of removing those

features segmented, from the wide field of view images, from the

target data base are displayed below. Figures 5.10, 5.11 and

5.12 display the average training accuracy.
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Figure 5.10 The network achieves accuracies just under 95Z.
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Figure 5.11 The network achieves accuracies of 98x.
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Figure 5.12 The network achieves accuracies of 98Z.

Below, Fig. 5.13 displays the first 4000 iterations for each

method on the same graph for a better comparison.
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Figure 5.13 The momentum and second order methods clearly exceed
the performance of the gradient of steepest descent. In
addition, notice that the second order method on the average
converges somewhat faster than the momentum method.

Figures 5.14, 5.15 and 5.16 represent the test data

accuracies of each method.
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Figure 5.14 The network achieves close to 65z. accuracy.
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Figure 5.15 The network achieves 85x accuracy. Notice how the

accuracy deteriorates over continuous training.
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Figure 5.16 The network achieves 85. accuracy. Notice how the

accuracy deteriorates over continuous training.

Figure 5.17 displays all three plots over the first 4,000

iterations for the test data.
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Figure 5.17 The momentum and second order methods clearly exceed - -

the performance of the gradient of steepest descent. In

addition, notice that the second order method performs a little

better than the momentum method.

Once again, the gradient of steepest descent has failed to

perform on a comparable level with the other two minimization

techniques. In the case of the doppler imagery, there was not

the significant difference between the different techniques, as

observed here with the FLIR imagery feature vectors. A closer

look at the accuracy plots, reveals that the SO method initially

converges a little faster than the first order momentum method,

as shown in Fig. 5.13 and reinforced in Fig.5.17.

In Figs. 5.15 and 5.16, observe that after about 1,200 or so

9training iterations the test data accuracy begins to deteriorate.

This phenomenon may be explained more clearly by analyzing the
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average total output error.
UW

5.3.3. Average Total Output Error

Again, the average total output error is defined exactly the

way it was in section 4.4.3.2. However, the total output error

was averaged over 75 feature vectors for the training set and

averaged over 29 vectors for the test set. The log error will be

plotted for the training data and test data.

1000 10000

LOG(NUMBER OF ITERATIONS)

AVERAGE NETWORK TRAINING PERFORMANCE FOR GRADIENT METHOD

Figure 5.18 Notice the smooth descent over all training

iterations.
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Figure 5.19 Notice the reduction in error over the gradient
method.

* - -~~~~------------ - - -- - - - ~ - - - ~ -

0-- 77

1000 10000

LOG(NUMBER OF ITERATIONS)
AVERAGE NETWORK TRAINING PERFORMANCE FOR SECOND ORDER METHOD

Figure 5.20 Note the minimal difference between the momentum and

second order methods.
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Notice, that in each graph the log of the error is basically

a smooth decreasing curve to about 1,200 training iterations,

after which the curve becomes very unstable. The average output

error for the test data, will provide a bit more insight to this

peculiarity. The average output error for the test data will

also support the information contained in Figs. 5.15 and 5.16.
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Figure 5.21 Notice the increase in error at roughly 10,000
iterations.

5-25

i F



.5 - I, I

C . - -4---------
,

I [ i

1000 10000

LOG(NUMBER OF ITERATIONS)
AVERAGE NETWORK TESTING PERFORMANCE FOR MOMENTUM METHOD

Figure 5.22 Notice the increase in error at roughly 1,350
iterations.
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Figure 5.23 Notice the increase in error at roughly 1,200

iterations.
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In each error plot, the error is decreased, to some minimum

and then abruptly begins to increase. This phenomenon agrees

with observations made in Figs. 5.15 and 5.16.

Considering Figs. 5.18 and 5.19, it appears the network is

learning and converging on the optimal weight values which

minimize the error surface. However, as the feature vectors are

presented to the network, over and over, a point is reached when

the network attempts to find an exact solution to the optimum

weight values. If the region of the minimum is a relatively flat

region, there may be many solutions. Therefore, the net begins

to meriiorize and the network loses its ability to generalize and

abstract the essence of the target. This may explain why the

* average network performance begins to degrade on the test data.

The network expects data which closely resembles the training

data. When it does not see this resemblance, then it makes an

inaccurate decision.

5.4. Summary

Classification of the target and non-target features using

the neural net classifier exceeded the performance of the

Bayesian classifier for the training data. But, the Bayesian

classifier performed better on the testing data. However, by

applying a more lenient classification accuracy on the neural

net classifier it is believed that the network performance will

be improved. Appendix F provides the results when applying a

more lenient criterion to the neural net.
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Classification of the moment invariant features proved quite

successful. The momentum and second order methods clearly

exceeded the performance of the gradient method of steepest

descent. Classification accuracies near perfection for the

training data were measured, while accuracies of 85Y were

achieved for the test data. Unfortunately, there was not a big

difference between the performance of the momentum method and

second order method, other than the second order method providing

a slight improvement in convergence time.

Chapter 6 entertains a general discussion on the results of

all three minimization techniques used in chapters 4 and 5.

Aside from these discussions, recommendations and conclusions are

5provided to conclude the thesis effort.
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I6. Discussions, Recommendations and Conclusions

The following sections provide the closing remarks

- concerning the results of this thesis effort. The chapter begins

with a discussion on the general results and findings provided

in chapters 4 and 5. Furthermore, the areas of further study in

pattern classification using neural networks, specific to this

research, are considered in section 6.2. The conclusion

discusses the contributions of this effort In the field of

tactical target recognition using neural network classifiers.

6.1. Discussions

The findings obtained in chapters 4 and 5 provide some very

interesting results. For example, with three different sets of

input feature vectors, it was shown that there were distinct
U

disadvantages of applying the gradient method of steepest

descent as a minimization technique. In every case studied the

momentum and second order approximation methoas exceeded the

performances of the gradient of steepest descent technique.

There are several reasons for this and a few are discussed below

in the paragraphs to follow.

When applying the steepest descent method, recall that the

weights are being updated in small constant proportional

increments of the partial derivative of the performance surface.

If the minimum of the error surface lies in a relatively flat

hyperplane, the reduction in error will be very slow. In
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addition, the existence of local minima could also pose a

significant threat to convergence. Another reason may lie In the

fact that the gradient (the vector of partial derivatives) may

not point in the direction of the global minimum. In weight

hyperspace, the partial derivative of the error surface (the

slope) in one weight direction may be far greater than the

partial In yet another weight direction. Hence, the gradient

would not necessarily point to the global minimum and the weight

update may be of little consequence in convergence. Thus, these

results confirm and reinforce the ideas and concepts of many

researchers throughout the literature.

However, there is disagreement by many in the field of

neural networks, as to the best way to accelerate convergence. A

seemingly controversial means of acceleration Is the momentum

term. Again, in all applications in this study, the momentum

method clearly exceeded the performances of the steepest descent

method. One reason for this, is the additional amount of

Information the momentum method provides to the network

concerning the error surface. With this method, the network is

allowed to look back in time by one time step. This allows the

network to add the so-called momentum term. This momentum term

is simply a weighted version of the weight update from the

previous time step, allowing convergence to continue in the same

direction as the previous step. If the current update has the

same sign as the previous update then the convergence towards the

minimum Is accelerated. If the signs are opposite then the
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update is small; it is hoped that this will prevent the networkU
from over shooting the minimum. However, this may not be the

case and the algorithm may also still be susceptible to local

minima. Never the less, in general, the momentum term has the

effect of adding a quadratic term to the minimum of the error

surface. This term performs an average of the current and

previous updates and the result is a smoothing of the error

surface. This study shows the momentum method to be quite

effective, when compared to the steepest descent method.

The second order approximation to Newton's method proved

just as successful as the momentum method and in some instances

slightly accelerated convergence. The basic concept behind

accelerating convergence is to provide the network with as much

information as possible about the ever changing error surface.

In doing so, the decisions made by the network are made faster,

more decisive and accurate. In using second derivativeU

information, it Is desired to gain new information. For

Instance, using first order techniques as those described above,

all the information about the past training is stored the

positional values of the weights. Second order methods store

information about the local shape of the error surfae-e, as well

as maintaining the positional information. In addition, the

algorithm used in this study, applies time derivative

information. With each new input presented to the network, the

performance surface changes. Therefore, when considering each

time step, the performance surface is changing with time. The
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time derivatives of signals propagating through the network,

provide the network information regarding how the performance

surface changes with time. Any acceleration in convergence over

the other two methods (within this study) has to be attributed to

this added information this algorithm is providing the network.

The reason there was not much difference between the

momentum and second order methods is not well understood.

Perhaps the very fact that the algorithm used in this study, is

merely an approximation to the more powerful Newton's method

provides the answer. After all, the actual implementation of

this approximation provided an additional term to the already

existing momentum method within the algorithm (see Eq. 2.8).

! iThis additional term contained all of the second derivative

information, as well as providing the time derivative

information. The following section provides recommendations for

areas of further study, to include techniques which may provide

more information than the momentum method, and thus accelerate

convergence.

6.2. Recommendations

The second order algorithm approximating Newton's method

provided some promise for pattern classification. However, from

the results of chapters 4 and 5, the second order algorithm

provided very little improvement over the momentum method, other

than a slight increase in convergence. Therefore, further

studies are required for improving the performance of neural net
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classifiers.

1. In chapter 2, it was shown that Parker [8] derived an

approximation to the powerful iterative technique known as

Newton's method. More specifically, the algorithm

approximates the following second order Newton's method:

L P p.-.at w ( dwdWT aw

Many problems arise when attempting to solve this linear

differential equation. First of all the number of operations

becomes a cubic function of the number of weights (n) in the

network. These are the number of operations required to

invert the matrix. However, as shown in appendix D, the

above matrix has a singularity and therefore is not

invertible. For these reasons and more, explains why an

iterative approach was used to approximate the above linear

differential equation. The approximation basically concerned

the splitting of the matrix as show in appendix A. There are

many ways to approximate the above equation by iterative

techniques.

Aside from the approximation to Newton's method applied

in this study, other approximations should be explored. One

such approximation may apply the Jacobian method for

splitting a matrix, in lieu of using the identity matrix.

Another method may employ a Gauss-Seidal method. Still,

another method, which may prove to be even more powerful, is
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the successive overrelaxation method which is a generalized

version of the Gauss-Seldal method. These methods allow the

inversion of a portion of the matrix, such as the diagonal,

rather than no inversion at all. To invert the diagonal

matrix requires a simple computational process.

A considerable amount of information Is known about the

second partial derivative matrix as eluded to In appendix D.

For instance, the concavity of the matrix Is solely dependent

upon the weighted input matrix. Hence, the more we know

about the input, the more we know about the concavity of the

performance surface. Second order techniques use the

concavity of the performance surface in computing a new

update to the parameter being optimized. An example of where

this discussion is heading is provided. Suppose that the

input components were orthogonal to one another. This

provides an orthogonal matrix. With this added information

on the Input, it would be a simple process to invert the

matrix, since

-i T
A =A.

2. The algorithm also approximated the average second partial

derivative of the performance surface as it's instantaneous

value. A better approach may be to calculate the average

second partial matrix or some portion of it. A means of

computing this average may take the following form:
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* ( °2.
avg - ,. -w .exp( -p.( v - K ) ),

( O T  K dwawT I(

where v the represents the maximum number of time steps

desired to average, while X represents the current time

step. The above equation provides a weighted memory of the

past, with the most recent input receiving the most weight.

Another alternative would be to explore a batch

technique. The idea Is to process all of the input data and

then average the total output error and corresponding

partials. The respective update equation would then have

information pertaining to all inputs and again provide

somewhat of a memory of all input data from the environment.

3. A more thorough investigation of the Roggemann FLIR

features is required. The number features used for target

and non-target classification could be increased from the

three used in this study. Later findings by Roggemann show

that the Bayesian classifier improved dramatically by

increasing the number features ( to 9). The neural network

performance should improve given the additional information

on the input.

6.3. Conclusions

The second order approximation to Newton's method proved

quite successful in pattern classification applications. In some

instances, it slightly accelerated convergence. The network was

6-7



able to classify targets with a moderately high degree ofU
accuracy. The classification of features segmented from the FLIR

imagery, is truly exciting. Each method provided classification

accuracies of the test data at close to 85Z and near perfect

accuracy on the training data, when using the moment invariants

as features.

There were four basic contributions made during this thesis

effort. First of all, this research effort has provided, tested

and validated a new biologically based neural network classifier.

The network applies second derivative information concerning the

second partial derivatives of the performance surface (in this

case error surface). In addition to providing second derivative

5Information this algorithm also provides information about how

the surface is changing with time. Even though the algorithm did

not provide a significant improvement in convergence time or

accuracy, it still performed on a comparable level with the

momentum method. This result alone adds validity to the concepts

behind the algorithm and continued study in this area is

warranted. Furthermore, this algorithm allowed for an easy

comparison between three different minimization techniques. The

results of this thesis clearly demonstrates the advantages of

using the momentum and second order methods over the steepest

descent method.

Secondly, the success of the artificial neural network

classifier reinforces the fact that they can be very effective in

applications on automated target recognition. In comparison with
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the Bayesian classifier, results demonstrate that the neuralK
network classifier exceeded the performance of the statistical

classifier on the training data. However, the Bayesian

classifier performed better on the test data. When the

classification criterion was less stringent (and comparable to

the Bayesian criterion), the neural net classifier using the

second order method further exceeded training performance levels.

The test data accuracy approached the performance levels of the

Bayesian classifler. This can be observed from the results in

Appendix E. These results reinforce earlier results found by

Ruck [12], demonstrating the superior performance of neural net

classifiers over statistical classifiers.

The third contribution concerns network generalization.

Results show that there may be a definite dividing line between

the network actually learning and memorizing its environment over

continuous training. Once that dividing line is crossed theU

network begins to memorize, thus destroying it's ability to

generalize or learn from its environment. In this study, the

test data accuracy began to deteriorate. This was particularly

noticeable with the FLIR imagery features. When the classifier

processed the doppler imagery features, this phenomenon was not

as noticeable. This should not be terribly disturbing, since the

data base consisting of doppler imagery features was so heavily

influenced by tank features. The network may not have seen the

other features enough to draw on such a conclusion.

The fourth and final contribution reveals that the
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classifier has the same disadvantages as a human observer. For

Instance, when the field of view was wide, the resolution of the

object of interest was poor. The actual target was

indistinguishable by a human observer. Using a narrower field of

view, provided better resolution and the target blobs were very

distinct. When using features generated from wide and narrow

fields of view the classification accuracy never grew higher

than 63Z on the training data. After removing the objects from

the wide field of view, classification increased dramatically.

In a supervised training environment, feeding the networR a

poorly resolved object with a classification label, is the same

as lying to the network.
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Appendix A: An Introduction to Newton's Method and Iterative

Methods

In chapter two, the approach to Parker's second order

derivation [8] was introduced. In this appendix, the steps

which were left out are provided here in detail. The first

section will cover the missing steps in the derivation of the

second order Newton's method. This will immediately be followed

by an introductory discussion on Newton's method in general.

Parker chose to approximate Newton's method, by solving the

linear differential equation by applying an iterative approach.

Therefore, an iterative approach will be discussed in general, in

the third section. The final topic for discussion concerns

convergence and the addition of Parker's leakage terms to the

approximation derived from the iterative approach. The

following text is the result of conversations and notes taken

from interviews with Dr. Mark Oxley [6).

A.I. Derivation of Newton's Method

The derivation begins with a restatement of Eq. 2.4, where

the functional dependencies of s on t, fin(), and w(t) have been

suppressed for convenience. The average instantaneous

performance is given by:

avg(s) J-O s' e - P ( t - T )  dT.

Assume that t is fixed and the above equation will provide a

A-1



snapshot of the performance surface. The equation for the

optimum weights is being derived from an optimum criterion. This

implies, the derivative of the average performance surface with

respect to the weights, evaluated at the optimum weights (wa) is

zero. Temporarily, let

aavg~s) t as
q - : 0 :p. -. e- W(t- T ) dr. A. I

wi--m awN

Now, let t vary and q becomes a constant function of time.

Again, from an optimum perspective, as s changes the weights

continue to follow the moving minimum. The next step is to apply

Leibniz's rule and compute the time derivative of Eq. A.I, where

aq asftd(s
- 0 W.- + p .. -a e- (t-r) dr
at awN --m at aw*

tas
-- 2 . .e - l t - T) d7.

awN

Notice that the second integral term is equal to -pq, and

therefore equal to zero. In the first integral, the only way s

depends on t is through w(t) and not on the input which depends

on r. Therefore, the following relationship holds:

a ( as a2s awW

at awN aw*aw *T at

such that aq/at becomes.
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0 w , ( ft _ _. .e--U(t-T) d

aW* -W w w*T  a t

and

as f a2 s -aw'
0 P.- + avg )--.

Ow* awMaw*T )t

The exponentially weighted time average of the second derivative

is a matrix (see appendix B). If the above matrix is invertible

(see appendix D) an explicit first order differential equation

for the optimum path of the weights is:

aw* ap-s -1 as
- - • I A.2

at awWaw*T aw-

Thus Eq. 2.5 has been derived. Equation A.2 is a second order

Newton's method.

A.2. Newton's Method in General

Newton's method is an iteration method for solving equations

of the form f(x) 0 , where f(x) has a continuous derivative.

The method is commonly used because of its simplicity and great

speed to convergence. The general idea is to approximate the

graph of f(x) by suitable tangents, see Fig. A.I.
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Figure A.I. An illustrative graph of Newton's method C3]

Using an approximate value x0 obtained from the graph of f(x),

let xi be the point of intersection of the x-axis and the tangent

to the curve at f(x 0 ). Then

df(x) f(Xo)
tan E : - :

dx x 0 - x

where

f (x 0 )
X t : X0

df (x 0 )

dx

In the second step, x 2 is found from x1 and in the following step

X3 is found from x 2. This is performed until f(xR) 0. In

general, Newton's method becomes:
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f (xi
XR i XR

df (XK )

dx

Equation A.2 is a straight forward continuum extension of the

above Newton's method. It's desired to have the partial of s

with respect to w4 approach 0.

A.3. An Iterative Method for Ax = b

If the matrix of Eq. A.2 is not invertible (and it is not)

or calculating the second order Newton's method is tedious, there

is another approach.

Consider the following expression given by

A(t, X(t)).X(t) : b,

which is in the same form as Eq A.2, with the matrix on the right

hand side of the equation. Let Ax = b, to reduce the notational

overhead. One approach to approximating the vector x is to

perform an iterative method. First, multiply the matrix A and

the vector b by RAt. The 0 controls the rate of convergence

and At is a small time increment which will later go to zero.

Then add and subtract the identity matrix from the resulting A

matrix. This is a means of splitting the A matrix and is

accomplished in the following manner:

( ,AtA + I - I ).X .At.b,
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r.

and

x x - P.At.A.x + O.At.b.

The next step allows the iterative approach to take full form.

The idea is to use the partial time derivative of x(t) to compute

an improved estimate of the partial time derivative of

x(t+At). It is desired to use some Known vector to predict

an improved version of that same vector. It is hoped, by

performing this process in an iterative manner, the time

derivative of x(t+At) will eventually be obtained. ReturninR

the functional dependencies for clarity, the iterative approach

assumes the following form:

U
xlt+At) : X(t) - 8.At.A(t, Xlt) ).x(t) + 13.At-b,

where

x(t+At) - x(t)
- - B.A(t, x(t).x(t) + 8.b

At

In the limit as At approaches zero, defines the partial time

derivative of x(t), that is

ax_ _ - B A(t, x(t)).x(t) + 1.b.

at

Let

avgf d2 s as
X(t) : -, AMt x(t) }:av b :-.-

at aww+T J aw+
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and then

a2w + (t) f a2 s dw+ (t) as
_ - 8.avgJ - f-W'. A. 3

at2  aw+aw+T at aw+

The (+) notation is used to imply an approximate value. Hence,

Eq. 2.7 Is derived.

A.4. Addition of Leakage Terms and Convergence

From Eq. A.3, Parker adds leakage terms to insure the

network will converge to some minimum, since the iterative

approach is no more than an approximation [7:593-600; 81.

Consider the following argument. Suppose that the iterative

approach succeeds in driving x(t+At) - X(t) to 0. Thus,

A'x + : b

implying that approximate x+ lies in a family of solutions

consisting of linear combinations, if A is not invertible. In

other words, there are a number of solutions for x + , which

satisfy the above equation. Many of these solutions may lie in

local minima. Thus, convergence to the optimum x* may never be

achieved. Therefore, a method must be sought to insure

convergence.

Parker argues that a natural way to insure convergence is

the addition of leakage terms (8). It's assumed that the

integrators required to implement the algorithm are indeed leaky.

An analogy drawn by Parker concerns that of an analog circuit.
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Consider electrons leaking off of a capacitor which stores energy

in the form of charge. Since all practical integrators have a

leakage rate, it seems logical to take them into consideration

[8].

Consider Eq. A.3. The first step is to calculate, the

second partial time derivative of w+ , and then integrate to

obtain the first partial time derivative of w+ , denoted as q+.

By integrating q+, w+ is obtained:

q+ : F- 8.avg aw+aw+T .q+ - .

aw+

W+ : q+ dr.

Next, take the time derivative of each of the equations above:

aq + a2 s a s
: - 3.avg 'q+ - H'U'-,

at aw+,aw+T aw

aw
+

-: q+.

at

Since two integrations are performed, then two leakage terms are

required. Therefore, subtracting the respective leakage terms

from each of the above equations has the following result:

aq (a 2s as- - 3 - av g[ - 'q 3- . '- - I . q, A. 4

at awawT aw 2
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aw
- = q - l.w. A. 5
at

The (+) notation has been removed, sin-e it is now believed that

a better approximation of the quantities of the left hand side of

each equation has been found. It is now desired to remove the

dependency on q, by taking the time derivative of Eq. A.5:

a 2 w aq aw
- - - I.- A. 6

at2  at at

and substituting Eq. A.2 into Eq. A.4:

a2w ( a2s as aw
: - B.avg awawT q- - 1 ,q- I I- A. 7

at2  a w 2 at

and finally, rewriting Eq. A.5, such that

aw
q - + I .w

at

and substitute q into Eq. A. 5, which yields tie final result:

a2 w as r a2 s
- : p- - 1.-1 2 1 + -.1avg ~ wwwa t aw -aa ) ).a~w

f f 2 s 8w
- (I + I ).I + 3avg. A.8

1 2 a waw T  at

To simplify the above equation somewhat, let

a 1  -
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3a 2  11-12,

a 3  : 1 i,

a4 : lj + 12, and

- a 5

Reparameterizing Eq. A.6, results in the following:

a2w as af2 s
- :-a,$--- a 2 1 + a 3.avg wT w

at ±aw 2 3 wdwT

( ( 2s dw
- a -I + a ,avg A. 9

4 5 awawT at

The result of adding the leakage terms, is that it provides

5 the same effect as adding a momentum term (see appendix D) and

additive noise. The momentum term has the effect of smoothing

the error surface. The basic concept behind momentum, is to

* suppress local minima, and enhance the global minimum. The

partial time derivative of w associated with a 4  is used in

introducing the momentum term (see section 3.4.2). The terms

associated with a 2 and a 3 , combine to introduce noise into the

network.
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Appendix B: Linear Algebraic Forms and Notation

In chapters two and three, the equations introduced were

heavily dependent on linear algebraic forms. This appendix

serves as an attempt to clear up the notational overhead. This

section also provides examples of elementary linear algebra in

the form of matrix addition and multiplication. In the

discussions below, each vector is considered a column vector

unless otherwise specified as the vector transpose.

The problem posed, is to expand the first and second order

partial derivatives of the performance quantity (s) and expose

the impending linear algebra. In chapter three, the network

performance quantity (s) was introduced as the squared error.

3 Consider the first partial derivative of the network performance

indicator (s). The partial derivative of s, as introduced in

chapter three, has the following form when written in terms of

m matrices,

as aeT
- : 2.--.e
aw aw



1 de ae )e-1 2 . -- z e

aw aw ow1
I I I

ae ae ae-- -- -- i e

- 2. aw Ow aw * 2
2 2 2

ae ae ae
I __a -.._M e

aw a w Ow m
n n n

( where

as de
e

aw I aw
1 1

I

:w I w

as ae

aw Ow

n n

The partial derivative of s with respect to w is a column vector.

When the performance Indicator is defined as error, the first

partial is expressed as the sum of the partials of each error

signal with respect to a given weight. The partial with respect

to each weight in the network, is the direction of the gradient

and points toward the maximum of the performance surface.

Therefore, the discussion begins with the second partial of s

as defined in chapter three,
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aeT ae a2eT
2 . . .+ .e B. 2

vaWWT aW aWT dwwT J

The above second partial is a matrix as is each of its

components. Below each component matrix is defined and expanded.

First, consider the partial of e transpose with respect to the

weight vector, where

ae ae oe_I __ .. __M I

aw dw dw
I I I

de ae ae

aeT dw aw aw
- -_ 2 2 2 B. 3

dw

ae ae aeI_ P ___2 __M

m w aw awnI n n j

and similarly, the partial of e with respect to w transpose
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!1ae ae ae

aw a~w alw

ae ae de

de dw aw ow
1 2 n B. 4

ae ae )e

aw aw aw

1 2 n

p The product of the matrices, Eqs. B.3 and B.4, determines

the first component of the sum in Eq. B.2.

ae ae ae ae ae ae

i aw aw i aw aw 1 aw aw

1 1 1 2 1 n

ae de de ae 6e ae

m aTe i 1w aw I1w 8w I aw aw
0 2 1 2 2 2 n B. 5

aw awT

ae ae de ae ae ae1 . 1_L _ _ E __ 1 .__ 1 ... . ___ .___

1 aw a~w I aw aw I aw cdw
n i n 2 n n

The next component considered is the second partial of e

transpose with respect to w and w transpose. This matrix is a

little more complicated and care must be taken to insure indices

are maintained when multiplying by e. This last component of the

second partial of (s) is defined as
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a2 eT m ae

d8 a2 e 2e

L e E e e e -
aw 1 O w I a3w w I 'dwd w

ai e 2 e a.. e

a2 1wII a 2 aw2 1 2 awn B.6

a2 e c32e a2 e

1 w 'dw 1 1 dww I wa
n t n 2 n nJ
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* Appendix C: Partial Derivatives of the Sigmoid Function

This appendix contains all the significant partial

derivatives of the sigmoid function used in this study of

artificial neural networks. Recall, that the output of a single

cell was chosen to be the sigmoid function, as introduced in

chapter two. In the various implementation stages it was

necessary to compute the first and second partial derivatives

with respect various independent variables. The independent

variables considered were the inputs to the cell (fin), the

interconnection weights (w), and the time (t) variables.

For clarity and simplicity, a single cell is considered with

several inputs and of course a single output, as shown in Fig.

*C.'.

gin,, I in,2, I dinr,

! I I

. 12 . 1 P

Y Y
fin.j. eo .l. fin.2. eout.2. fin. . Cou,.€.

Figure C.A A Single Cell

The first order partials will be considered first, followed

by the second order partials. The computations begin with the
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*partial of the output (fout) with respect to w.

ow tw i + exp(-fT 'w)
in

O(

£ + exp(-fT .w) )1-
aw( in

-i.( i + exp(-fT w) )- 2 . - exp(-f T .w)
in aw in

T
I Iexp(-fin.W) a

.- (fT *w)

i + exp(-fT .w) 1 + exp(-fT .w) dw in
in in

Using the following relationship, where

exp(-a) 1

I + exp(-a) i + exp(-a)

- fout

and

Ta : f in "W.

Taking the above substitution, the partial of fout with respect

to w becomes:

out 1 f I - f f C. 1
aw out' out in

For example, the partial of fout with respect to w, is
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ow1  out' out J in. I

Similarly, the partial of fout with respect to fin has the

same form and is expressed as:

Out f . - o W C. 2
in ou t ou t

As for the time derivative of the sigmoid function, it is

F assumed that both the inputs and weights are functions of time.

Therefore, the derivative of the sigmoid with respect to time

will again be a partial over all the weights and inputs of the

cell, such that

S ( I
o u t .- 

T W
at at I + exp(-fT .w)

in
aa

- ( I + exp(-f T  w) 1-

at( in

-1.( I + exp(--fT .w) -2.-  exp(-fT .w]
in at( in

T
exp(-fin.w) a T

S...-(-f i.W)

I + exp(-fT .w) I + exp(-fT w) at
in in

: f . I _ f . fT .
out'( out a( inw
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From here the chain rule is applied to obtain the following:

T
af ( dv df
-- a= : - .( 1 -f fT ._ * ___in.w
at out out in at at

The above may be rewritten by applying Eqs. C.A and C.2, where

afout afou t a w  afout afin
- .- - + C.3

at aWT at afT at
in

The second order partials are a straight forward extension

of the first order partials. In fact, Eqs. C.1 and C.2 will be

used in the computation of the second order partials. To begin,

the partial of fout with respect to w and w transpose is

considered.

2fout d (f

awaw T  aw T I

a(
f f ).fT

out out in

' of -f )O _9Ut. ( i - f f - . out .fT
aW out out aW in

S f I f )2.f (f )2.(1 f - ) f I.fT
out out in out out in in

f ( -f I f f f fT
out out out out ) in in
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32 fout T
-f ' I- fout }'( oI - 2 -fout -fin'fin C. 4

awdwT

Similarly, the second partial of fout with respect to fin and

fin transpose is found to be:

daf out
3 fout( i - fout ).( I - 2-fout ),w.wT .  

C. 5af af T

in in

Another second partial used in the formulation of the second

order algorithm, is the second partial of fout with respect to w

and fin transpose. Again the use of Eqs. C.A and C.2, and the

application of the chain rule is desired, to obtain

out df out

awaf T  awaf T

in in

- f t - f ).W T

aw out out

Of Of
out.( I - - f .ou .wT

aw out out aw

+ f .( I - f - WT

out out owk

where the result of the partial of wT with respect to w is an

(nxn) matrix and is denoted as I, and has the following form:

C-
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10 0 ... 0

0 1 0 ... 0

0 ... 0 0 1

With this in mind the final form of the second partial becomes:

a2f
out : f I f )2.Lf (f 12. 1 - f ).f .wT

dwdfT out out in out out in

in

+ four'( 1- fout ).I

: f • ( I - f ) I f f -- -WT

out out out outJ in

+ fout2( I - fout ).I

d 2 fout

: fout'( i - lout )'( I - 2"fout )'fn ' wT
dw~fT

in

f lout'( I - fout ).I C. 6

In a similar fashion, the second partial of four with respect to

fin and wT is found to be

a2fout T
: T out'( I - fout )'( i - 2 'fout )'w'fin

df 1nOwT

+ fout ( I - fout ).I C. 7
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The f inal partials to consider are the partials of fout with

respect to time and w or f in-

d ( a out df QL

at w aw at

aw awT  at afT  at
i n

by applying Eq. C. 3.

a o out. ~ out .d in

aw Jt awawT at dwdfT at
in

T aw
four ( I - fout ).( 1 - 2.fout )'fin 1

f in'-

at

if n

+fout ( - out ) ( I - e fout ).fin.wT.

at

af in
+ foutr( I - fout )"-

at

Similarly,

C-7
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a ( df 2f w a2 f
-o gut. - + out in
8at J f awT at af 6jT at

in in in in

T aw
fout( I - fout )*( i - 2 fout ) Wdfin.-

at

af in+ out' ( - tour ). ( I - 2.out ).w.wT.

+ fout'( I - fout ).- . C. 8
at

I
The above computations provide an excellent review, as well

as a quick reference to the partial derivatives of the sigmoid

function. From the results, it is readily seen why the sigmoid

function is a popular nonlinear transfer function used by the

artificial neural network cciimunity. All of the partials of the

sigmold are functions of the sigmoid itself. This makes

computations very simple and convenient for a digital computer.
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UAppendix D: Second Order Convergence Conditions for a Single Cell

The topic of this appendix concerns some ideas for improving

the network convergence to an optimum set of weights. More

specifically, the questions posed are: Can the network begin

its training routine with the second order algorithm? If so,

what criterion must be met to insure that the network will

converge on an optimum set of weights? Is there a means of

improving the convergence times? The first section discusses the

initial state of the network. It introduces the criterion which

must be met in order to begin training with the second order

algorithm. The next and final section entertains the idea of

accelerating convergence with a momentum term. The following

text is the result of conversations and notes taken from

interviews with Dr. Mark Oxley [5].

D.i. Initialize Training with the Second Order Algorithm

To begin answering the above questions, a simple problem is

constructed for clarity. Consider a single layer perceptron that

classifies an analog input vector into two classes denoted I and

2, see Fig. D.1,

The single cell is to divide the space spanned by the input

into two regions separated by a line ( or hyperplane ) in two

dimensions. Class I will be represented by a desired output of

1, while the desired output for class 2 is 0. For training

purposes it is desired to minimize the squared error function

with the second order algorithm. To begin training with a second
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Figure D.A Pictorial Problem Description

order algorithm, it is desired for the initial weight settings

to exist within the basin of attraction of a global minimum of

the squared error performance surface. In this context, the

global minimum is defined over the entire training ensemble of

input vectors. If this criterion is not met, the path towards

the optimum set of weights may never be found by the second order

algorithm.

Let

I k
s(w) - ( d - f(x, w) )2 D. i

k J=1

where s(w) is the average squared error over all K input vectors.

For the problem considered here, w = (w i , w2 , w3 ) and x = (XI ,

x 2 , i). Keep in mind that the concept can be extended to a

network of higher dimensionality. By taking the first partial
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derivative of s and evaluating at the optimum weights (w*), it is

desired that a minimum exists, and preferably equal to 0.

Assume that f(x J , w) is the sigmoid function, so that the

results of appendix C may be used and

as(w) 2 R a (
: --.E ( d - f(xJ, w) ).- d - f(xJ, w)

a W R J:l dw(

2 IC
--- E ( d - f(xJ, w) ).f(x 3 , w).( I - f(xJ, w) ).xJ D. 2

R j:1

where it is desired for

c s(w* )

- : 0," O
aw

since the global minimum is also desired. To insure a minimum

and not a saddle point, the second partial of s is considered.

dwdwT -2 k a d - f(x 3 , w).- d - f(xJ, w)
aWaW T  k j:j 1 awT

2 k
E f(xJ, W).( I - f(xJ, W)

f(xj, w).( I - f(x J ,  w)

-(d - f(xJ, w) )-( I- 2.f(xJ, w)

. (x J)T. D. 3

The expression preceeding the matrix is a scalar for given

values of xj and w; therefore, the entire expression is in the

D-3
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form of a matrix. If the expression is determined to be positive

definite, then when the first partial of s is evaluated at the

optimum weights the result is the minimum of the error surface,

and ideally zero.

First, it must be determined that xJ.(xJ)T is a positive

definite matrix or not. Therefore, a necessary and sufficient

condition for the real symmetric matrix A to be positive definite

[14:2 43-2 5 4:

(1) yT.A.y > 0 for all nonzero vectors y.

(2) All the eigenvalues of A satisfy ki > 0.

(3) All the submatrices An have postive determinants.

(4) All the pivots (without row exchanges) satisfy d. > 0.

To satisfy criterion (1) consider the following:

* yT.A.y yT.xJ.(XJ)T.y

( yT.xj ).( (xJ)T.y

( yT.xJ )2 1 0.

The above result shows that the matrix X.].(xJ)T could be

positive definite or positve semi-definite (implying a 0

eigenvalue). Further investigation with criterion (2) is

necessary. If the matrix is singular, then a 0 eigenvalue

exists. To determine the singularity of a matrix consider the

determinant of A.

Recall that xJ represents an arbitrary input pattern, where
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each pattern will be considered a column vector. Each component

of a single pattern or vector is denoted as x 1 . Considering a

specific input vector to ease the notational overhead, and

expanding the matrix yields:

X Ox x .X X
t 1 1 2 1

X.X T  X *X X #X X
2 1 2 2 2

x x
1 2

and hence the

Al --x.xT1

:(x 1 )
2 .( (x2 )2 - 1x 2 ) 2 ) - x 1 'x 2 "( x 2 'x1 - x2'x I

+ xi.( xl.(x 2 )2 - xi.(x 2 )
2

0.

Since the matrix is singular, it is positive semi-definite. At

this point, the test for a global minimum is inconclusive, since

it is entirely possible that the second partial evaluated at the

optimum weights may be a saddle point. Therefore, it is

necessary to force the matrix to be positive definite and insure

a global minimum by adding a scaled quadratic function of the

weights to s(w), such that

S(w) s(w) + E.( w- w )T.( w -ww ), E 0 0. D.4

D-5



This particular quadratic was chosen, such that when the first

partial derivative is taken and evaluated at W*, the partial of

the quadratic reduces to zero under ideal conditions. The second

partial of S(w) evaluated at the set of optimum weights (w*) is

a2S(w * ) a2 s(w*)

+ 2E.I ) 0
awa)wT dwawT

and positive definite if

f(xJ, w).( I - f(xj, w)

- d - f(xJ, w) ),( I - 2,f(XJ, w) ) 0 0, for each

Two cases miist be considered, d = i and d 0 0. For d 0 0, a new

function of the output may be described, such that

GO(f) - f.( 2 - 3.f

for a particular input and a given set of weights. The graph of

GO(f) is shown below in Fig. D.2. Keep in mind that the values

of the sigmoid function are continuous over the range (0, 1).

This implies that GO(f) is non-negative over 0 f 2/3.
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Figure D.2 Quadratic Function f or d 0

When d 1, the function ta~es on the following form:

GI(f) =-3-f 2 - 4-f - i

The quadratic equation provides the points where the function

crosses the zero axis, such that GI(f) is non-negative over the

range t/3 !f 1. The graph of GI(f) is shown below in Fig.

D.3.

G(f)

Figure D.3 Quadratic Function for d 1
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By over lapping the two graphs of Figs. D.2 and D.3, the

range of values f can assume is t/3 . f . 2/3. If the output

meets this initial criterion, then the second partial of the

squared error is a positive definite matrix. The criterion

placed on the initial weight values, such that the training

begins in the neighborhood of the global minimum can be found by

rewriting this inequality. This is accomplished below.

Consider the range of values the output of the sigmoid

function may take on, in order to begin training within the

neighborhood of a global minimum; such that

( 2
- f(xT.w) S -

3 3

1 1 2
- C . -

3 1 + expf-xT.w) 3

3

+ * exp(-XT.w)

I + exp(-xT.w) < 3 2 P + 2.exp(-XT.w).

Consider the lower bound, where

exp(-xT,w1 _ 2.

The lower bound for the weighted sum of the inputs becomes:

xT.w - -n(2).
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The upper bound is found in a similar fashion,

exp(-xT.w) 1 i

xT.w j ln(2).

The final criterion becomes,

-ln(2) 1 xT.w I ln(2).

This relationship must hold over the entire input vector

ensemble. If this criterion is met, then it is insured that

training will begin with a set of weight values in the

neighborhood of a global minimum over the entire input ensemble.

Therefore, when considering the entire input training set,

-In(2) S (xJ)T.w 1 In(2). D. 5

Results of this relationship suggest that the optimal weight

values are bounded in weight space by hyperplanes. These

hyperplanes are described from the above criterion, if xT,w

is allowed to equal the two extremes, -ln(2) and ln(2), for a

specific input. The result is a hypercube in weight space. The

ensemble of hypercubes over all input vectors approximates a

sphere in weight space enclosing the optimal weight values for

the corresponding set of input vectors.

By placing some restrictions on the magnitude of the input

vectors and then analyzing the criterion of Eq. D.5, the initial

D-9
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range of weight values may be randomly chosen. For instance,

assume that the inputs have been normalized to lie in the

interval (-I, t). By restating Eq. D.5 in the following manner:

-In(a) 1 n W .I ln(2),
11

where n ranges over all inputs to the cell. With the above

inequality, consider a worst case condition; assume that all the

inputs are all equal to 1 (or -I). This condition places a

further restriction on the initial value of the weights, than

imposed by the above inequality of Eq. D.5, such that

n
-ln(2) E w . ln(2)

1:1

and

n
-1n(2) . w . ln(2). D. 6

The above inequality provides a strict criterion for the initial

weight values of each cell. For applications within this study,

the weights are randomly set. It would be a trivial exercise to

perform the above criterion and reset the weights of those cells

which do not meet the inequality.

Two important results should be observed from the discussion

above. First, if the criterion of Eq. D.6 is met, then a the

inequality of D.5 is met. This implies that the second partial

derivative of the squared error is a positive definite matrix.
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The existence of the positive definite matrix implies the

existence of a global minimum over the corresponding input set.

Furthermore, training begins within some neighborhood of the

global minimum. Secondly, randomly setting the weights to very

small, negative and positive, values provides a near zero value

for the sum of weighted inputs. This implies that all output

nodes fire on average, near 0.5, allowing the network to train

and drive the outputs toward desired values. If the nodal

outputs are driven towards extremely low or high values

initially, the network has a very difficult task of driving the

network towards desired values in the opposite direction.

D.2. The Momentum Term

The weighted quadratic function added to the squared error

term, is an attempt at driving the second partial matrix of the

squared error to a positive definite matrix. However, many

researchers desire to use this quadratic, with the idea of

enhancing convergence times. For instance, consider Eq. DA as

the function to minimize during training. Reproducing Eq. D.4

provides,

I k
S(w) Z -- E ( d - f(XJ, w) )2 + E.( w - w* )T.( w - WT

R j:1

Using a first order technique, the weights are changing according

to the following first order differential equation:
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-: - -B-s + E-( w - w' )T.( w - w j

at OwJ

Lippman describes the discrete counterpart of the above

differential equation [4:17]. By computing the partial, the

weights are updated by:

1w 2.13 k
- ( d - f(XJ. w) ).f(xJ, w).( i - f(xJ, w) ).xJ

at R< j:

+ 2.E.( w - w* )

The parameter 0 controls the convergence rate. The last term,

2.E.(w - w * ), is known as the momentum term and first

introduced by Rummelhart, Hinton, and Williams [13). An

ariticle by Lippman describes the momentum term as possibly

improving convergence times [4:171. In the derivation of the

second order approximation, Parker introduces the momentum term

by means of leakage terms (7:593-600; 8]. Parker believes the

leakage terms insure convergence.

In the last section, conditions were established such that

the network could begin training with a second order algorithm.

However, what happens to the positive definite matrix of the

second partial of S as the network trains? To maintain the

status of a positive definite matrix, there must be some

condition placed on E. In this section, it is desired to find

the optimal momentum scalar, E, insuriLig that the search is

always being performed near the global minimum.
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Consider Eq. D.4, which defines a new performance surface,

where

S(W) S(W) + E-( W -W* )T#( W -W*

and the average second partial of S becomes:

a2 S(w) 2

dwdwTE -* f(X j, w) ( - f (x3, W) )

f(x3 , W).( 1 -~j w)

-d -f(XJ, W) )-( I-2.f(xJ, w) )

.Xj.(XJ)T + 2.E.I.

Let

a(xJ, w) -f(xl., w)-( 1 - f(xJ, w) ).f(xJ, w)-( 1I f(xJ, W)

-(d -f(XJ, W) )-( i- 2.f(xJ, w) )

m then

d2S(w) 2 kc
axw).xJ.(xj)T +2.E.I.

dwdwT

Given an input pattern and set of weights a becomes a scalar.

Its dependence on xJ and w will be removed for convenience.

To remain within the global minimum, the matrix above must

maintain its positive definite condition. Again, the test for a

positive definite matrix is applied, such that
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I yT.( a.XJ.(xJ)T + 2:E:I ).y ) 0,

for all j 1, 2. ...., and for all y which are members of

Rn. So

a.yT.xJ.(XJ)T:y + 2:E:yT.y

a.( yT.xJ ).( (xJ)T:y ) + 2:E:yT.y

a.( (xJ)T.y )T.( (xJ)T:y ) + 2:E:yT.y

that is, we wish

a.( (xj)T.y )2 + 2.E.yT.y ) 0 D.7

Two cases must be considered along the way to insure that the

above inequality is met. First, given an a > 0 and an xJ, is

there a condition on E such that the inequality is met? Yes, E >

- 0, where E is independent of a and xJ. The second case is not so

trivial. For, given an a < 0 and an x3 , what condition is placed

on E, where E = E(a, xJ)? Rewriting Eq. D.7,

-a- ( (xJ)T.y )2

E ) D. 8
2 .yT.y

Recall that y is a nonzero vector. Figures DA and D.5 are plots

of a as a function of the output (f) for values of d 0 and d

I respectively.
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II A k max

where the elgenvalues are found by

Y.I xJ.(xJ)T- X.I .yT 0

or

X OX -A *X X
1 1 1 2 1

X *X x x- X :0
2 1 2 2 2

x x 2-1 2

for a particular input vector j. The above determinant produces

a cubic in X, where

A2.( -X + (x 2  x2 1)2 ) 0

and

-max : X + + 1.

Finally, E is estimated as:

I k J2

E - . "1 a(xJ, w).( (x )2 + (x 2 1 )
L.J 2

J:I

This expression is for the specific problem described above in

section D.I. In general, while considering the minimum a (-

0.06), E can be rewritten as:
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E ) 0. 05.--. (xj )2 + I D. 9
K :1 1I 

From the above inequality, E is a function of the sum of the

square of the input components averaged over the entire ensemble

of input vectors. The input equal to I is analogous to a

threshold.

By adding the quadratic function of the weights to the

function (squared error) being minimized, a smoother error

surface results. It is believed the quadratic will (for lack of

a better expression) stretch out inflection and/or saddle points,

providing a smoother upward concavity. If the region in

proximity of the global minimum is relatively flat, the

quadratic will increase convergence times, again by providing an

upward concavity. Thus the quadratic removes areas within the

error surface which may slow down the converging process. The

expression for E in Eq. D.9, insures that this condition is

maintained throughout training.

One question remains to be answered. From the above

discussions, W* is the optimum vector of weights used to

determine the minimum of the error surface. So what value is

used to approximate w*? - It's the best estimate of the previous

weight values, approximated by the weight update rule being used.

D-17



Appendix E: Further Comparisons with the Bayesian Classif ier

This appendix provides an extended comparison of the neural

net classifier and Bayesian classifier. However, the criterion

for determining correct classification has been altered for the

neural net classifier. In chapter five, the node corresponding

to a correct choice, had to fire above 0.8, while all other nodes

fire less 0.2. This criterion will be eased a bit to provide a

comparable analysis (if possible). Now, the node corresponding

to a correct classification must fire above 0.5 and all other

nodes below 0.5. Table E.i provides the results for a single

pass through the networK.

Table E.A Overall Classification Accuracy. (1) Gradient of
Steepest Descent, (2) Momentum Method, (3) Second Order Method,
(4) Bayesian.

Overall Accuracy

(1) (2) (3)

Training Data 91.9z 88.7Y I 74.8I

Testing Data 67. 8Z 72. 4/Z 75. 3Z

The above table represents an instance during a typical

training session. Again, the neural net classifiers far exceed

the performance levels of the Bayesian classifier, when the

training data is considered. However, the Bayesian classifier

has a sizable edge on the momentum method and a slight edge on

the second order method, when regarding the test data. It is

likely that the neural net classifier would improve, if the
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amount of information is increased, For instance, by increasing

the number of original input features. The neural net learns by

example, the more information the net has, the more opportunity

the net has to learn it's environment.
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Appendix F: XOR 1kxiel

with tex-io; use textio;
with integertex-io; use integer.textio;
with floattex-io; use float-text-io;
with float.math.lib; use float.math.lib;
with system;

with MATHLIBEXTENSION; use MATHLIBEITENSION;
with VECTOR-OPERATIONS; use VECTOR-OPERATIONS;
with somp.support; use somp.support;

procedure SOOR is

num.inputs : integer;
numLl-nodes : integer;
numL2_nodes : integer;
Al : float;
A2 : float;
A3 : float;
A4 : float;
AS : float;

total-error : float;
IterationCount : integer : 0;
Convergence-Count : integer : 0;
Convergence-Criterion : constant 0.1;
interval : integer;

Center : float;
Width : float;
total-cost : float;

Seed : system.unsigned-longword MATHLIBEXTENSION.get-seed;

begin --Main

put ("Enter center of random weight distribution: "); get (center);
skip-line;

put ("Enter width of random weight distribution: "); get (width);
skip-line;

put ("Enter number of inputs: "); get (num-inputs); skip-line;
put ("Enter number of Li nodes: "); get (numLl-nodes); skip-line;
put ("Enter number of L2 nodes: "); get (numL2_nodes); skip-line;
put ("Enter interval: "); get (interval); skip-line;



pu "ne h osatA: gt(l;si-ie

put ("Enter the constant Al: "1); get (A); skip-.line;
put ("Enter the constant A3: ";get WA); skip-line;
put ("Enter the constant A3: );get (A4); skip-.line;
put ("Enter the constant AS: ";get (A4); skip-.line;

declare

Li : layer (num..inputs, num_.Ll.nodes )
L2 : layer (nun...l..nodes, num.L2_.nodes )
Dout : vector (1 .. num-.L2-.nodes )

begin

- -Initialize network parameters

for j in Ll.W'range(2) loop
for i in Ll.W'range(l) loop
uniform ( center, width, seed, Li.W(i, j) )
Ll.Del-W(i, j) :- 0.0;

end loop;
uniform ( center, width, seed, Ll.Theta~j) )
L1.Del.Theta(j) := 0.0;

end loop;

for j in L2.W'range(2) loop
for i in L2.W'range(l) loop

uniform ( center, width, seed, L2.W(i, j) )
L2.Del-W(i, j) := 0.0;

end loop;
uniform ( center, width, seed, L2.Theta(j) )
L2.Del-Theta(j) := 0.0;

end loop;

while Convergence-Count /= 4 loop

if Iteration-.Count mod 2 = 0 then
Ll.Fin(l) 0.1;

else
Ll.Fin(l) 0.9;

end if;

if Iteration-.Count mod 4 < 2 then
Ll.Fin(2) :=0.1;

else
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L1.Fin(2) :- 0.9;
end if;

if Iteration-Count mod 4 = 0 or Iteration-Count mod 4 = 3 then

Dout(l) :- 0.1;
else

Dout(l) :a 0.9;
end if;

forward-pass (LI, A3, AS );

L2.Fin : Ll.Fout;
L2.FinPrime : Ll.FoutPrime;

forward-pass ( L2, A3, AS );

L2.Etotal := 2.0 * ( Dout - L2.Fout );

for i in L2.FoutPrime'range loop
L2.EtotalPrime(i) := -2.0 * L2.FoutPrime(i);

end loop;

total-error := sumoutput.error ( L2.Etotal );

if abs ( total-error ) < Convergence-Criterion then
Convergence-Count Convergence-Count +1;

else
Convergence-Count 0;

end if;

backward-pass ( L2, A3, AS );

LI.Etotal := compute-sum ( L2.Eout );
LI.EtotalPrime := compute-sum ( L2.Eout.Prime );

backward-pass ( L1, A3, AS );

total-cost := 0.0;

update-weights ( L2, total_cost, Al, A2, A4 );
update-weights ( L1, total_cost, Al, A2, A4 );

update-thresholds ( L2, total-cost, Al, A2, A4 );
update-thresholds ( Li, totalcost, Al, A2, A4 );
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Iteration-Count : Iteration.Count + 1;

if Iteration-Count mod interval - 0 then
new.line;
for i in L2.Fout'range loop

put ("Error - "); put (L2.Etotal(i)/2.0); put (" "

end loop;
put ("Iteration a "); put (Iteration-Count); new.line(2);

end if;

end loop;

put ("Iterations till Convergence- "); put (Iteration-Count);

end;

end SOXOR;
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--- ** ** ** * ** **** ** ***** * *** * *** ** ** ** * **** * ** * ** ** * *** ** * *** * **** **

-- * Appendix G: ADA Programming Model *

-- * This program is a computer simulation of a biological-based *
-- * neural network, applying a modified backward error propaga- *
-- * tion (BEP) algorithm. This neural network model was *
-- * developed for applications in pattern classification. The *
-- * modified BEP uses a minimization technique based on an *
-- * approximation to a second order Newton's method. This *
-- * algorithm takes advantage of second order derivatives (of *
-- * the surface to be minimized), as well as first order deriva- *
-- * tives. Time derivatives of the signals propagating through *
-- * the network are also used in updating the network weights. *
--* Below is the main procedure, Second Order Multilayer *
-- * Perceptron (SOMPl.ADA) written in the ADA programming *
--* environment. *

--* Model implemented by: Capt Clark Piazza, USAF *

---- ************ ************************************************** **

with system;
with text io; use text io;
with floaE text io; use float text io;
with integer teit io; use integer text io;
with float_math_lib; use float_mithlTb;

with sompio; use sompio;
with somp_support; use somp_support;
with vector operations; use vector operations;
with mathliTbextension; use mathlTb extension;

procedure sompl is

center : float;
width : float;
num Ll nodes : integer;
num-L2 nodes : integer;
num-clisses : integer;
num tr_patterns : integer;
numte_patterns : integer;
num moments : integer;
Al : float;
A2 : float;
A3 : float;
A4 : float;
A5 : float;

-- Testing and training files containing pattern feature vectors.
-- The file containing the features, must of type string 16
-- characters long.
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te list : string ( 1 16 )
tr list : string ( 1.. 16 );

seed : system.unsigned longword :- math lib extension.get seed;

output error : float;
error Tolerance : float;
total-cost : float;
total-distance : float;
avg dTstance : float;
maxT index : integer;
max2-index : integer;
max 1terations : integer;
intirval : integer;
num iterations : integer;
te count : integer;
tr-count : integer;
tr num correct : float;
te-num-correct : float;

tr accuracy : float;
te accuracy : float;
tot tr error : float;
tot-te-error : float;
avg-errperpat : float;
num_passes : integer :- 1;
totpasses : integer;
numpoints : integer;

convergence : boolean;

tr error file : text io.file type;
te-error-file : text-io.file-type;
tr-accuracyfile : text-io.file-type;
te accuracy_file : text-io.file-type;

-- Begin main procedure.

begin

-- Enter the following from the terminal or create a com file.

put ( "Enter center of random weight distribution (center),
type float: " ); get ( center ); skip line;

put ( "Enter width of random weight diitribution (width),
type float: " ); get ( width ); skipline;

put ( "Enter number of layer one nodes (num Li nodes),
type integer: " ); get ( num Ll nodes ); skip-line;

put ( "Enter number of layer Ewo nodes (num L2 nodes),
type integer: " ); get ( num L2 nodes ); sVip-line;

put ( "Enter number of output-no~es (numclasses),
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type integer: " ); get ( num classes ); skipline;
put ( "Enter number of training patterns (num tr patterns),
type integer: " ); get ( num tr patterns ); skip line;

put ( "Enter number of testing patterns (num te pitterns),
type integer: " ); get ( num te patterns );-skp line;

put ( "Enter number of moments per pattern (num moments),
type integer: " ); get ( num moments ); skip line;

put ( "Enter training moment aata file (tr list),
type string: " ); get ( tr list ); skip iTne;

put ( "Enter testing moment-data file (ti list),
type string: " ); get ( te list ); skipTine;

put ( "Enter number of sepaiate training passes (tot_passes),
type integer: " ); get ( tot passes ); skip line;

put ( "Enter maximum number o? iterations (max iterations),
type integer: " ); get ( max iterations ); skip_line;

put ( "Enter output interval To examine results,
type integer: " ); get ( interval ); skip line;

put ( "Enter error tolerance (error toleraice),
type float: " ); get ( error tolerance ); skip_line;

-- Enter the desired learning parameters. Al controls convergence
-- for first order method. A2 and A3 control the amount of noise
-- induced into the network. A4 controls the amount of momentum.
-- A5 is a convergence term controlling the second derivative
-- information.

put ( "Enter constant Al, type float: " ); get ( Al ); skip line;
put ( "Enter constant A2, type float: " ); get ( A2 ); skip-line;
put ( "Enter constant A3, type float: " ); get ( A3 ); skip-line;
put ( "Enter constant A4, type float: " ); get ( A4 ); skip-line;
put ( "Enter constant A5, type float: " ); get ( A5 ); skip-line;

create ( tr error file, out file, "tr error.dat" );
create ( te-error-file, out-file, "te-error.dat" );
create ( tr-accuricy file, out file, wtr accuracy.dat" );
create ( teaccuracy-file, out-file, "te-accuracy.dat" );

-- Declare network layer variables.

declare

Li : layer ( num moments, num Ll nodes );
L2 : layer ( num-Ll nodes, num L7 nodes );
L3 : layer ( num-L2-nodes, num-classes );
Dout : vector ( 1 .. hum classes );
trainingarray : matrix ( 1 .. num-trpatterns, 1 .. num moments + 1 );
testingarray : matrix ( 1 .. num tepatterns, 1 .. num moments + 1

-- Interval must be some multiple of max iterations.

datapoints : integer :- ( maxiterations / interval ) + 1;

avg tr error : vector ( 1 .. datapoints );
avgte error : vector ( 1 .. data_points );
avgtr-acc : vector ( 1 .. data-points );
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avg_teacc : vector ( 1.. datapoints);
tracc_array : matrix ( 1 .. tot_passes, 1 .. datapoints );
te_acc_array : matrix ( 1 .. tot_passes, 1 data points );
trerr_array : matrix ( 1 .. tot_passes, 1 .. data points );
te errarray : matrix ( 1 .. tot_passes, 1 .. datapoints );

-- The parameters below may be used to measure the amount of change
-- of the weights and thresholds, via cost.

Li weights : constant natural : num moments * numLInodes;
Ll-thresholds constant natural : num-L1 nodes;
L2-weights : constant natural : num-L-nodes * numL2_nodes;
L2-thresholds : constant natural : num-L2-nodes;
L3-weights : constant natural : num-L2-nodes * num classes;
L3-thresholds : constant natural : num classes;

totparameters : constant float :-
float( Ll_weights + Li thresholds +

L2_weights + L2 thresholds +
4.L3_weights + L3_thresholds);

-- Begin declare block.

begin

-- Get training and testing moments, store into an array.
getmoment-array ( tr list, num moments, training array);
get moment array ( telist, num moments, testing_array );

-- Initialize and train network a predetermined number of times
-- and average network performance.

-
while numpasses <- tot_passes loop

-- Initialize network variables.

initialize-network ( Li, L2, L3, center, width, seed );

-- Begin training.

numpoints :- 1;
num iterations :- 0;
convergence :- false;

while num iterations <- max iterations loop
-- convergence - false an3

generaterandommoms ( numtrpatterns, num moments,
training_array, Li.Fin, Dout, seed );

-- Begin forward pass through network.
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computeforward-pass ( Li, L2, L3, A3, A5 );

-- Compute output error and time derivative of error for each
-- output node.

L3.Etotal :- 2.0 * ( Dout - L3.Fout );

for i in L3.Fout Prime'range loop
L3.Etotal Prime(i) :- -2.0 * L3.Fout Prime(i);

end loop;

-- Compute sum of output errors, sum and average over all
-- input patterns, and test with error tolerance for convergence.

-- output error :- sum outputerror ( L3.Etotal );
-- if num-iterations mod num tr patterns /- 0

or nim Tterations - 0 then
-- avgerrper pat :- avg err perpat
-- -+ ( outputerroc / float(num tr patterns ) );
-- elsif avg_err_per_pat < error-tolerance then
-- convergence :- true;
-- else
-- convergence := false;
-- end if;

-- Begin backward pass through the network one layer at a time.

backward_pass ( L3, A3, A5 );

L2.Etotal :- compute sum ( L3.Eout );
L2.EtotalPrime :- computesum ( L3.EoutPrime );

backwardpass ( L2, A3, A5 );

Ll.Etotal :- compute sum ( L2.Eout );
Ll.EtotalPrime :- computesum ( L2.EoutPrime );

backwardpass ( Li, A3, A5 );

total-cost :- 0.0;

update weights ( L3, total cost, Al, A2, A4)
update-weights ( L2, total cost, Al, A2, A4 );
update-weights ( Li, total-cost, Al, A2, A4 );

update thresiolds ( L3, total cost, Al, A2, A4 );
update thresholds ( L2, total cost, Al, A2, A4 );
update-thresholds ( L1, total-cost, Al, A2, A4 );

-- Used to measure network parameter changes.

-- avg distance :- sqrt( total-cost ) / totparameters
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-- Compute network performance.

if num-iterations mod interval - 0 then

-- Check training data performance.

tot tr error :- 0.0;
tr num correct :- 0.0;
trcount :- 1;

while trcount <- num tr_paLterns loop

geneLateseqmoms ( tr count, num moments, training_array,
Ll.Fin, Dout T;

compute forward_pass ( Li, L2, L3, A3, AS );

find max vals ( L3.Fout, maxlindex, max2 index );

tr num correct :- tr num correct
float ( correct T maxi index, max2 index,

L3.Fout, Dout ) T;

L3.Etotal :- 2.0 * ( Dout - L3.Fout );

outputerror :- sum output_error ( L3.Etotal 1;

tot tr error :- tot tr error + outputerror;

tr count :- tr count + 1;

end loop;

tr acc array ( num passes, numpoints
. computeratio-( trnumcorrerc, numtr_patterns );

tr err array ( num passes, numpoints
:- compute_ratio-( tot tr error, num-tr patterns );

-- Check test data performance.

tot te error :- 0.0;
te num correct :- 0.0;
te count :- 1;

while te count <- num tepatterns loop

generate_seqmoms ( te count, nuin moments, testing_array,
LT.Fin, Dout-);

compute forward_pass ( LI, L2, L3, A3, A5 );

find max vals ( L3.Fout, maxlindex, max2_index );
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te num correct :-te num correct
Tfl'Eat (correct T mail index, max2 index,

L3.Fout, Dout )T;

L3.Etotal :-2.0 *(Dout - L3.Fout )

output-error :-sum-output_error ( L3.Etotal )

tot-te-error :-tot-te-error + output-error;

te-count :- te-count + 1;

end loop;

te acc-array ( num -passes, num -points
:compute_ratio ( te-num-correct, num-te_patterns )

te err array ( num passes, num points
:compute-ratio( tot te error, num-te_patterns )

num-points :- num-points + 1;

end if;

num-iterations :- num-iterations + 1;

end loop;

num-passes :- num_passes + 1;

end loop;

-- Compute average network performance.

* avg -tr -error :-compute average ( tr -err -array, tot_passes )
avg_te-error computeaverage ( te -err -array, tot_passes )
avg -tr -acc :-computeaverage ( tr -acc -array, tot_passes )
avg-te-acc :-computeaverage ( te-acc array, tot_passes )

-Store average network performance in matrixX format.

store net_perf ( avg_tr_error, tr error file, interval )
storenet_perf ( avgte_error, te error-file, interval )
store~net_perf ( avg tr_acc, tr accuracyfile, interval )
store~net_perf ( avgte acc, te-accuracy-file, interval )

-- Close all files.

close (tr error file )
close (te error-file )
close (tr accuricy file )
close (te accuracy-filc~)
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-- End declare block.

end;

S-- ~nd main procedure.
end sompl;
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with system;
with textio; use textio;

with vector operations; use vector operations;
with mathliTb_extension; use mathib extension;

package sompsupport is

type layer ( inputs : positive; outputs positive ) is
record

-- Network Parameters

Fin : vector ( 1 .. inputs );
Fin Prime : vector ( 1 .. inputs );
W : matrix ( 1 inputs, 1 outputs );
Del W : matrix ( 1 .. inputs, 1 .. outputs );
Theta : vector ( 1 outputs );
Del Theta : vector ( 1 .. outputs );
Fout : vector ( 1 outputs );
Fout Prime : vector ( 1 outputs );
Eout : matrix ( 1 inputs, 1 outputs );
Eout Prime : matrix ( 1 inputs, 1 outputs );
Etotal : vector ( 1 outputs );
Etotal Prime : vector ( 1 outputs );

-- Temporary variables

X : vector ( 1 outputs );
V : vector ( 1 outputs );
U : vector ( 1 outputs );
Q : vector ( 1 outputs );

a R : vector ( 1 outputs );

end record;

function sigmoid ( input : vector ) return vector;

function computesum ( input : matrix ) return vector;

function sum_outputerror ( input vector ) return float;

function correct ( indexi, index2 integec;
output, desired vector ) return integer;

function compute_ratio ( numerator : float ;
denominator : inceger ) return float;

function computeaverage ( perfarray : matrix;
tot_passes : integer ) return vector;
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procedure initializenetwork ( LI, L2, L3 : in out layer;
center : in float;

* width : in float;
seed : in out system.unsigned_longword );

procedure forwardpass ( L : in out layer;
A3, A5 : in float );

AM procedure compute_forwardpass ( L1, L2, L3 : in out layer;
A3, A5 : in float );

procedure backwardpass ( L : in out layer;
A3, A5 : in float );

procedure update-weights ( L : in out layer;
cost : in out float;
Al, A2, A4 : in float );

procedure update_thresholds ( L : in out layer;

cost : in out float;
Al, A2, A4 : in float );

procedure findmaxvals ( output : in vector;
indexl : in out integer;
index2 : in out integer );

end somp_support;

m
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with floatmath lib; use floatmathlib;

package body somp_support is

function sigmoid ( input : vector ) return vector is

output : vector ( input'range );

begin

for i in input'range loop
begin

output(i) :- 1.0 / ( 1.0 + exp ( -input(i) ) );
exception

when FLOOVEMAT -> output(i) :- 0.0;
end;

end loop;

return output;

end sigmoid;

function compute_sum ( input : matrix ) return vector is

total : vector ( input'range(l) ) :- ( others -> 0.0 );

begin

for i in input'range(l) loop
for j in input'range(2) loop

total(i) :- total(i) + input(i, j);
end loop;

end loop;

return total;

end computesum;

function sumoutputerror ( input vector ) return float is

total : float :- 0.0;

begin

for i in input'range loop
total :- ( total + abs( input(i) ) ) / 2.0;

end loop;

return total;

end sumoutputerror;
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5function correct ( indexi, index2 : integer;
output, desired : vector ) return integer is

update : integer;

begin

if output(indexl) >- 0.5 and output(index2) < 0.5
and desired(indexl) - 1.0 then

update :- 1;
else

update :- 0;

end if;

return update;

end correct;

function compute_ratio ( numerator float;
denominator : integer ) return float is

quotient float;

begin

quotient :- numerator / float(denominator);

return quotient;

end computeratio;

function compute_average ( perfarray : matrix;
tot_passes-: integer ) return vector is

temp float;

perfvector-: vector ( perf_array'range(2) );

begin

for j in perfarray'range(2) loop
temp :- 0.0;
for i in perf array'range(l) loop

temp :- temp + perf_array(i, j);
end loop;
perf vector(j) :- temp / float(tot_passes);

end loop;
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return perf-vector;

end compute-average;

procedure initialize networX, ( Li, L2, L3 :in out layer;
center : in float;
width : in float;

Fseed : in out system.unsigned_longword )is

begin

for j in L1.W'range(2) loop
for i in L1.W'range(l) loop
uniform ( center, width, seed, L1.W(i, j) )
Ll.DelW(i, j) :- 0.0;

end loop;
uniform (center, width, seed, L1.Theta(j) )
L1.DelTheta(j) :- 0.0;

end loop;.

for i in Ll.Fin'range loop
7 L1.Fin Prime(i) :- 0.0;

end loop;.

for j in L2.W'range(2) loop
for i in L2.W'range(l) loop
uniform ( center, width, seed, L2.W(i, j) )
L2.DelW(i, j) :- 0.0;

1 end loop;.
uniform ( center, width, seed, L2.Theta(j) )
L2.Del_-Theta(j) :- 0.0;

end loop;.

for j in L3.W'range(2) loop
- for i in L3.W'range(l) loop

uniform ( center, width, seed, L3.W(i, j) )
L3.DelW(i, j) :- 0.0;

end loop;.
uniform ( center, width, seed, L3.Theta(j) )
L3.DelTheta(j) :- 0.0;

end loop;.

end initialize-network;

procedure forward_pass (L :in out layer;

Tep lot;A3, A5 :in float is

beg in
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L.X :-L.Fin * L.W;
L.Fout :-sigmoid ( L.X + L.Theta )
L.V :-(others -> 0.0 )

3 for j in L.W'range(2) loop
for i in L.W'range(l) loop

L.V(j) :- L.V(j) + ( L.Fin(i) *(A3 *L.W(i, j)
+ A5 * L.Del W(i, j)))
+ (L.FinPr~me(i) * L.W(i, j) )

end loop;

- Temp -(A3 *L.Theta(j)

+ (AS * L.DelTheta(j) )

L.V(j) mL.V(j) + Temp;
L.U(j) -L.Fout(j) * ( 1.0 - L.Fout(j) )

-L.Fout Prime(j) :-L.V(j) * L.U(j);
end loop;,

end forward_pass;

procedure compute forward_pass (L1, L2, L3 :in out layer;

A3, A5 in float )is

begin

forward_pass (Li, A3, A5 )

L2.Fin :-L1.Fout;
L2.Fin Prime :-L1.FoutPrime;

forward_pass (L2, A3, AS )

L3.Fin :-L2.Fout;

L3.Fin Prime :-L2.FoutPrime;

forward_pass (L3, A3, A5 )

end compute-forward_pass;

procedure backward-pass ( L :in out layer;

A3, AS : in float ) is

begin

for j in L.W'range(2) loop
L.Q(j) :-L.U(j) * L.Etotal(j);

L.R(j) :-L.U(j) * ( L.Etotal Prime(j) + ( L.Etotal(j)
* ( 1.0 - 2U* L.Fout(j) )*L.V(j) ))
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for i in L.W'range(l) loop
L.Eout(i, j) :-L.Q(j) *L.W(i, j);
L.EoutPrime(i, j) :-( L.R(j) * L.W(i, j)

+ ( L.Q(j) * ( A3 * L.W(i, j)

endlop;+ A5 * L.DelW(i, j) ))

end loop;

end backward_pass;

procedure update_weights ( L : in out layer;
cost : in out float;
Al, A2, A4 : in float ) is

begin

for j in L.W'range(2) loop
for i in L.W'range(l) loop
L.DelW(i, j) :-( ( 1.0 - A4 )*L.DelW (i, j)

-(A2 *L.W(i, j))
+ ((( Al * L.Q(j) ) + L.R(j) )*L.Fin(i)
+ (L.Q(j) * L.Fin prime (i) )

L.W(i,j) :-L.W(i,j) + L.DelW(i, j);

cost :- cost + (L.Del W(i, j) ** 2 )

end loop;
end loop;

end update weights;

procedure update_thresholds (L :in out layer;
cost :in c.ut float;
Al, A2, A4 :in float ) is

begin

for i in L.Theta'range loop
L.DelTheta(i) :-((1.0 -A4 )*L.Del Theta(i))

-( A2 *L.Theta(i) T
+ ( ( Al * L.Q(i) ) + L.R(i) )

L.Theta(i) :-L.Theta(i) + L.DelTheta(i);

cost :- cost + (L.Theta(i) *2 )

end loop;
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end updatethresholds;

procedure find max-vals ( output : in vector;
indexi : in out integer;
index2 : in out integer ) is

max1 : float :- 0.0;
max2 : float 0.0;
templ : integer;
temp2 : integer;

begin

for i in output'range loop
if output(i) >- maxl then

templ :-i;
maxi :- output(i);

end if;
end loop;

for i in output'range loop
if output(i) >- max2 and output(i) < maxi then

temp2 :-i;
max2 :- output(i);

end if;
end loop;

indexI :- templ;
index2 :- temp2;

end find max vals;

end somp_support;
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with system;
with text io; use text io;
with floaE text io; use floaE text io;
with integertext_io; use integerteit_io;

with vector operations; use vector operations;

with math lib extension; use math iTb extension;

package sompio is

procedure get_momentarray ( image list : in string;
num moments : in integer;
moment array : in out matrix );

procedure get_featurearrays ( num features : in integer;
filename : in out string;
featurearray : in out matrix );

procedure generate randommoms ( num patterns : in integer;
num moments : in integer;
moment-array : in matrix;
input : in out vector;
Dout : in out vector;
seed in out system.unsigned_longword );

procedure generateseq_moms ( count : in integer;
num moments : in integer;
moment array : in matrix;
input : in out vector;
Dout in out vector );

procedure storenetperf ( perf vector in vecto:;
perffil : in out text io.file_type;
interval : in integer T;

end somp io;

G-17



package body somp_io is

procedure getmoment_array ( image_list in string;
num moments : in integer;
moment-array : in out matrix ) is

initial : integer 1;
final : integer : 0;
tempclass : integer;
numvector : integer;

image name : string ( 1 .. 14 );
image-file : text io.filetype;
Temp_name : text-io.filetype;

begin

open ( image_file, in-file, imagelist );

while not end of file ( image-file ) loop
get ( image-file, image name );
open ( temp name, in fiTe, imagename );
get ( temp_name, temp_class );
get ( tempname, num vector );

final :- final + num vector;

for i in initial .. final loop
skip line ( temp_name, 3 );
for ] in 2 .. ( num moments + 1 ) loop
moment array(i, 1T :- float(tempclass);
get ( temp_name, moment_array(i, j) );

end loop;
end loop;

close ( tempname );

initial :- initial + num vector;

end loop;

close ( imagefile );

end getmomentarray;

procedure get_feature arrays ( numfeatures in integer;
filename : in out string;
feature array : in out matrix ) is

counter : integer :- 1;
temp_class : integer;

target : string ( 1 4 );
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input_file : textio.file_type;

begin

open ( input file, in file, filename );
while not enaoffile (inputfile) loop

get ( input file, temp_class
get ( input-file, target );
skipline (-inputfile );

featurearray(counter, 1) :- float( temp_class );

for j in 2 ..( num features + 1 ) loop
get ( input_fileT featurearray(counter, j) );

end loop;

skipline ( input file, 2 );

counter :- counter + 1;

end loop;

close ( input_file );

end getfeature_arrays;

procedure generate random moms ( num patterns : in integer;
num moments : in integer;
momentarray : in matrix;
input : in out vector;
Dout : in out vector;
seed : in out system.unsigned_longword ) is

pick : float;
temp class : integer;
choiEe : integer;

begin

Dout :- ( others -> 0.0 );

uniform ( 0.5, 0.5, seed, pick );
choice :- integer ( pick * float(numpatterns) + 0.5 );
if choice < 1 then

choice :- 1;
elsif choice > num patterns then

choice :- numpatterns;
end if;
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temp_class :- integer ( momentarray(choice, 1) );

for j in 2 .. (num moments + 1 ) loop
input(j - 1) :- momentarray(choice, j);

end loop;

Doutttempclass) :- 1.0;

end generaterandommoms;

procedure generate_seq_moms ( count : in integer;
num momerts : in integer;
momentarray : in matrix;
input : in out vector;
Dout : in out vector ) is

temp_class : integer;

begin

Dout :- ( others -> 0.0 );
temp_class :- integer(moment_array(count, 1));

for j in 2 .. (num moments + 1 ) loop
input(j - 1) :- moment array(count, j);

end loop;

Dout(temp_class) :- 1.0;

end generateseq_moms;

procedure storenet_perf ( perfvector : in vector;
perf file : in out text io.filetype;

b inteival : in integer T is

tempinterval : integer :- 0;

begin

put ( perf file, "x - [" );
new-line (-perf_file)

for i in perf vector'range loop
put ( perfTile, temp interval );
new line ( perffile T;
temp_interval :- temp_interval + interval;

end loop;

put ( perf file, "]" );
new line (-perf file );
put-( perf file, "y - [" );
newline (-perf_file);

for i in perf vector'range loop
put ( perfTile, perfvector(i) );
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new line (perf_file )

end l"5op;

put ( perf_file, "")

end store-net_perf;

end somp io;



-- Math.LibExtension

-- Purpose: Provides access to pseudorandom number
-- generators for both uniform and Gaussian distributions.

-- Inputs: 1) See individual routines.

-- Outputs: 1) See individual routines.

-- Author: Dennis W. Ruck (GE-87D), AFIT/ENG

with system; use system;
package math-lib-extension is

type time-array is new unsignedwordarray (1..7);

procedure mth-random ( val : out float; seed : in out unsigned.longword );
pragma INTERFACE ( vaxrtl, mth-random );
pragma IMPORTVALUEDPROCEDURE ( mth-random, 'MTH$RANDOM",

mechanism => (value, reference));

procedure uniform C center : in float;

width in float;
seed : in out unsigned-longword;
val out float );

procedure gaussian ( mean in float;
variance : in float;

seed in out unsigned-longword;

val out float );

function get-seed return unsigned-longword;

end math-lib-extension;
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Math.LibExtension (package body)

-- Purpose: Package to provide pseudeorandom number generators

-- with uniform and Gaussian distributions.

-- Inputs: 1) See the individual routines.

-- Outputs: 1) See the individual routines.

-- Author: Dennis W. Ruck (GE-87D), AFIT/ENG

with starlet;

with condition-handling;
with floatmath.lib; use float-math-lib;

package body math-libextension is

-- This procedure will return a uniform random sample centered
-- about CENTER plus or minus WIDTH.
procedure uniform ( center : in float;

width : in float;

seed : in out unsignedlongword;
val : out float ) is

x : float;

begin

-- get uniform random variable between 0 and I
mth-random ( x, seed );

-- adjust to center +/- width
x : x * width * 2.0;
x : x + center - width;

val :- x;

end uniform;
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U -- This procedure will return a gaussian random variable sample

-- with mean MEAN and variance of VARIANCE. The central limit theorem

-- is invoked to approximate the gaussian with a sum of uniform RVs.

procedure gaussian ( mean : in float;

variance : in float;
seed : in out unsigned.longword;

val : out float ) is

num.rvs . constant :- 20;

sum : float := 0.0;

x : float;

Z : float;
T : float;

ave . float;

norm : float;

begin

-- Obtain a sum of random variables that are uniform between

-- 0 and 1.

Ufor i in 1..num-rvs loop

mth-random ( x, seed );

sum := sum + X;
end loop;

- ave := sum / float(num.rvs);

-- AVE is a rv with mean = 0.5 and variance = 1/(12*num.rvs);
-- now normalize AVE
Z :a (ave-0.5)/sqrt(1.0/(12.0*float(num-rvs)));

-- Now unnormalize to desired mean and variance

Y :a mean + sqrt(variance)*Z;

val := Y;

end gaussian;

function get-seed return unsigned.longword is

-- Returns the lower unsigned longword of the binary representation

-- of the system time as the initial seed for the pseudo-

-- random number generator.
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status condition-.handling.cond.valu...typ.;
bintim :fusign.&..quadvord;

begin

- STARLET.gettim ( status, bintim )

return bintim.LO;

and get-need;

end math..lib-a.xtension;
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-- Vector-Operations (package spec)

-- Purpose: Provide general vector operations to allow

-- a more readable implementation of equations consisting
-- of one and two dimensional arrays.

-- Inputs: 1) See individual routines.

-- Outputs: 1) See individual routines.

-- Author: Dennis W. Ruck (GE-87D), AFIT/ENG
-- Modified By: Charles C. Piazza (GE-88D), AFIT/ENG

with textio;

package vector-operations is

type vector is array ( integer range <> ) of FLOAT;

type matrix is array ( integer range <>, integer range <> ) of FLOAT;

function "*" ( left : vector;
right : matrix ) return vector;

function "*" ( left, right : vector ) return float;

function "*e ( left : float;
right : matrix ) return matrix;

function "*" ( left : float;
right : vector ) return vector;

function "+" ( left, right : matrix ) return matrix;

function "+" ( left, right : vector ) return vector;

function "-" ( left, right : matrix ) return matrix;

function "-" ( left, right vector ) return vector;
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Pfunction distance ( left, right : vector ) return float;

procedure put ( output : in text.io.file.type;
data : in vector );

procedure put ( data : in matrix );

procedure get ( input : in text.io.file.type;

data : out vector );

end vector-operations;
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Vector.Operations (package body)

-- Purpose: Provide generic vector operations to allow a more
-- readable implementation of equations consisting of one and

-- two dimensional arrays.

Inputs: 1) See individual routines.

-- Outputs: 1) See individual routines.

-- Author: Dennis W. Ruck (GE-87D), AFIT/ENG

-- Modified By: Charles C. Piazza (GE-88D), AFIT/ENG

with text-io; use text.io;
with float-text-io; use floattext-io;

with float.math-lib; use floatmath.lib;

package body vector-operations is

function "" ( left : vector;
right : matrix ) return vector is

sum : FLOAT;
product : vector ( right'range(2) );

begin

for j in right'range(2) loop

sum := 0.0;
for i in right'range(1) loop

sum := sum + left i) * right (i,j);
end loop;
product (Q) :- sum;

end loop;

return product;

end "C";
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function "u" ( left, right vector ) return FLOAT is

sum : FLOAT :- 0.0;

begin

for i in left'range loop
sum := sum + left (i) * right (i);

end loop;

return sum;

end " *;

function "*" ( left : float;
right : matrix ) return matrix is

product : matrix ( right'range(1), right'range(2) );

begin

for i in right'range(1) loop
for j in right'range(2) loop
product (i, j) := left * right (i, j);

end loop;
end loop;

return product;

end "*";

function "*" ( left : float;
right : vector ) return vector is

product : vector ( right'range );

begin

for i in right'range loop

product (i) :- left * right (i);
end loop;
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return product;

end "*";

function "+" ( left, right matrix ) return matrix is

sum : matrix ( left'range(1), left'range(2) );

begin

for i in left'range(2) loop
for j in left'range (1) loop

sum (i, j) := left (i, j) + right i, j);
end loop;

end loop;

return sum;

end "+" ;

function " " ( left, right vector ) return vector is

sum : vector C left'range );

begin

for i in left'range loop

sum (i) :- left (i) + right (i);

end loop;

return sum;

end " ";

function "-" ( left, right : matrix ) return matrix is

diff: matrix (left'range(1), left'range(2) );

begin

for i in left'range(2) loop

for j in left'range(l) loop
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!

diff (i, j) - left (i, J) - right i. j);
* end loop;

end loop;

return diff;

end A

function "-" ( left, right vector ) return vector is

diff : vector ( left'range );

begin

for i in left'range loop

diff (i) := left (i) - right (i);
end loop;

return diff;

end "-" "

function distance C left, right : vector ) return float is

sum-x2 float : 0.0;

begin

for j in left'range loop
sum-x2 := sum-x2 + C left (j) - right (j)) * ( left (j) - right (j));

end loop;

return sqrt C sum-x2 );

end distance;

procedure put ( output in text-io.file-type;

data in vector ) is

col-max constant 72;
width constant 10;

col positive : 1;
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begin
for j in data'range loop

put ( output, data (Q), 0, 6, 1 );
put ( output, " " );
col := col + width;

if col > col-max then

new.line ( output );

col :- 1;

end if;

end loop;
end put;

procedure put ( data in matrix ) is

col_max : constant := 72;

width : constant :a 10;

col : positive := 1;

begin

for i in data'range(I) loop

for j in data'range(2) loop

put ( data (ij), 1, 4, 0 );
put C " "

col : col + width;

if col > col-max then

new-line;

col := 1;
end if;

end loop;

new-line;

col :- 1;

end loop;

end put;

procedure get ( input in text-io.file.type;
data out vector ) is

begin

for j in data'range loop

get ( input, data (j));

end loop;

end get;
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and vector-.oprations;
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